The Lie symmetries of nonholonomic mechanical systems are corsidered. Some defmi tions and criteria on the Lie symmetries, and the conservation laws of the systems are given.And some examples to illustrate the applic...The Lie symmetries of nonholonomic mechanical systems are corsidered. Some defmi tions and criteria on the Lie symmetries, and the conservation laws of the systems are given.And some examples to illustrate the application of the results are provided.展开更多
In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associat...In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.展开更多
It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are ...It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.展开更多
The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws ...The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws of some important systems of nonlinear partial differential equations have been obtained.展开更多
In this paper, we investigate conservation laws of a class of partial differential equations, which combines the nonlinear telegraph equations and the nonlinear diffusion-convection equations. Moreover, some special c...In this paper, we investigate conservation laws of a class of partial differential equations, which combines the nonlinear telegraph equations and the nonlinear diffusion-convection equations. Moreover, some special conservation laws of the combined equations are obtained by means of symmetry classifications of wave equations uxx = H (x)utt.展开更多
Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of extemal fluctuations. The key to this theoretical advan...Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of extemal fluctuations. The key to this theoretical advance is that the correlation lengths of the thermal fluctuations become significantly long for nanoscale systems. This differs from macroscopic systems in which the thermal noises are usually treated as white noise. Our observation does not violate the second law of thermodynamics, since at the nanoscale, extra energy is required to keep the asymmetric structure against thermal fluctuations.展开更多
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K...In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method.展开更多
In this paper, the symmetry group of the is studied by means of the classical symmetry method (2+l)-dimensionM Painlevd integrable Burgers (PIB) equations Ignoring the discussion of the infinite-dimensional subal...In this paper, the symmetry group of the is studied by means of the classical symmetry method (2+l)-dimensionM Painlevd integrable Burgers (PIB) equations Ignoring the discussion of the infinite-dimensional subalgebra, we construct an optimal system of one-dimensional group invariant solutions. Furthermore, by using the conservation laws of the reduced equations, we obtain nonlocal symmetries and exact solutions of the PIB equations.展开更多
In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is...In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is anaiyzed. By applying the basic Lie symmetry method for the HSE, the classical Lie point symmetry operators are obtained. Also, the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of one- dimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed. Particularly, the Lie invariants as well as similarity reduced equations corresponding to in- finitesimal symmetries are obtained. Mainly, the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem, first homotopy method and second homotopy method.展开更多
文摘The Lie symmetries of nonholonomic mechanical systems are corsidered. Some defmi tions and criteria on the Lie symmetries, and the conservation laws of the systems are given.And some examples to illustrate the application of the results are provided.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.
基金Supported by the China NSF for Distinguished Young Scholars under Grant No.10925104
文摘It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.
基金supported by the State Key Basic Research Program of China under Grant No.2004CB318000
文摘The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws of some important systems of nonlinear partial differential equations have been obtained.
文摘In this paper, we investigate conservation laws of a class of partial differential equations, which combines the nonlinear telegraph equations and the nonlinear diffusion-convection equations. Moreover, some special conservation laws of the combined equations are obtained by means of symmetry classifications of wave equations uxx = H (x)utt.
基金supported by the National Natural Science Foundation of China (Grant Nos.10825520 and 11175230)the Shanghai Leading Academic Discipline Project (B111)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciencesthe Shanghai Supercomputer Center of China
文摘Based on a simple model, we theoretically show that asymmetric transportation is possible in nanoscale systems experiencing thermal noise without the presence of extemal fluctuations. The key to this theoretical advance is that the correlation lengths of the thermal fluctuations become significantly long for nanoscale systems. This differs from macroscopic systems in which the thermal noises are usually treated as white noise. Our observation does not violate the second law of thermodynamics, since at the nanoscale, extra energy is required to keep the asymmetric structure against thermal fluctuations.
基金Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No.XZD201602the Fundamental Research Funds for the Central Universities under Grant Nos.2015QNA53 and 2015XKQY14+2 种基金the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Minesthe General Financial Grant from the China Postdoctoral Science Foundation under Grant No.2015M570498Natural Sciences Foundation of China under Grant No.11301527
文摘In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method.
基金Supported by the National Natural Science Foundation of China under Grant No.11075055Innovative Research Team Program of the National Natural Science Foundation of China under Grant No.61021004Shanghai Leading Academic Discipline Project under Grant No.B412
文摘In this paper, the symmetry group of the is studied by means of the classical symmetry method (2+l)-dimensionM Painlevd integrable Burgers (PIB) equations Ignoring the discussion of the infinite-dimensional subalgebra, we construct an optimal system of one-dimensional group invariant solutions. Furthermore, by using the conservation laws of the reduced equations, we obtain nonlocal symmetries and exact solutions of the PIB equations.
文摘In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is anaiyzed. By applying the basic Lie symmetry method for the HSE, the classical Lie point symmetry operators are obtained. Also, the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of one- dimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed. Particularly, the Lie invariants as well as similarity reduced equations corresponding to in- finitesimal symmetries are obtained. Mainly, the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem, first homotopy method and second homotopy method.