The invariance of the ordinary differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities for the singular Lagrange system. The determining equations, ...The invariance of the ordinary differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities for the singular Lagrange system. The determining equations, the restriction equations of the Lie symmetries and the form of conserved quantities of the system are obtained.展开更多
This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are es...This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
Three kinds of symmetries and their corresponding conserved quantities of a generalized Birkhoffian system are studied. First, by using the invariance of the Pfaffian action under the infinitesimal transformations, th...Three kinds of symmetries and their corresponding conserved quantities of a generalized Birkhoffian system are studied. First, by using the invariance of the Pfaffian action under the infinitesimal transformations, the Noether theory of the generalized Birkhoffian system is established. Secondly, on the basis of the invariance of differential equations under infinitesimal transformations, the definition and the criterion of the Lie symmetry of the generalized Birkhoffian system are established, and the Hojman conserved quantity directly derived from the Lie symmetry of the system is given. Finally, by using the invariance that the dynamical functions in the differential equations of the motion of mechanical systems still satisfy the equations after undergoing the infinitesimal transformations, the definition and the criterion of the Mei symmetry of the generalized Birkhoffian system are presented, and the Mei conserved quantity directly derived from the Mei symmetry of the system is obtained. Some examples are given to illustrate the application of the results.展开更多
Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformati...Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.展开更多
Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomi...Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
In order to investigate the dynamic behavior of non-conservative systems,the Lie symmetries and conserved quantities of fractional Birkhoffian dynamics based on quasi-fractional dynamics model are proposed and studied...In order to investigate the dynamic behavior of non-conservative systems,the Lie symmetries and conserved quantities of fractional Birkhoffian dynamics based on quasi-fractional dynamics model are proposed and studied.The quasi-fractional dynamics model here refers to the variational problem based on the definition of RiemannLiouville fractional integral(RLFI),the variational problem based on the definition of extended exponentially fractional integral(EEFI),and the variational problem based on the definition of fractional integral extended by periodic laws(FIEPL).First,the fractional Pfaff-Birkhoff principles based on quasi-fractional dynamics models are established,and the corresponding Birkhoff’s equations and the determining equations of Lie symmetry are obtained.Second,for fractional Birkhoffian systems based on quasi-fractional models,the conditions and forms of conserved quantities are given,and Lie symmetry theorems are proved.The Pfaff-Birkhoff principles,Birkhoff’s equations and Lie symmetry theorems of quasi-fractional Birkhoffian systems and classical Birkhoffian systems are special cases of this article.Finally,some examples are given.展开更多
It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are ...It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.展开更多
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a...Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
This paper focuses on studying a conformal invariance and a Noether symmetry, a Lie symmetry for a Birkhoffian system in event space. The definitions of the conformal invariance of the system are given. By investigati...This paper focuses on studying a conformal invariance and a Noether symmetry, a Lie symmetry for a Birkhoffian system in event space. The definitions of the conformal invariance of the system are given. By investigation on the relations between the conformal invariance and the Noether symmetry, the conformal invariance and the Lie symmetry, the expressions of conformal factors of the system under these circumstances are obtained. The Noether conserved quantities and the Hojman conserved quantities directly derived from the conformal invariance are given. Two examples are given to illustrate the application of the results.展开更多
The symmetries and non-Noether conservation laws of Birkhoffian system with unilateral constraints are studied. The differential equations of motion of the system are established, and the criterions of Noether symmetr...The symmetries and non-Noether conservation laws of Birkhoffian system with unilateral constraints are studied. The differential equations of motion of the system are established, and the criterions of Noether symmetry, Lie symmetry and Mei symmetry of the system are given. Two types of new conservation laws, called the Hojman conservation law and the Mei conservation law respectively, are obtained, and the intrinsic relations among the symmetries and the new conservation laws are researched. At the end of the paper, an example is given to illustrate the application of the results.展开更多
In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associat...In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.展开更多
文摘The invariance of the ordinary differential equations under the infinitesimal transformations was used to study the Lie symmetries and conserved quantities for the singular Lagrange system. The determining equations, the restriction equations of the Lie symmetries and the form of conserved quantities of the system are obtained.
文摘This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.
基金The National Natural Science Foundation of China(No.10972151)the Natural Science Foundation of Higher Education Institution of Jiangsu Province of China (No.08KJB130002)
文摘Three kinds of symmetries and their corresponding conserved quantities of a generalized Birkhoffian system are studied. First, by using the invariance of the Pfaffian action under the infinitesimal transformations, the Noether theory of the generalized Birkhoffian system is established. Secondly, on the basis of the invariance of differential equations under infinitesimal transformations, the definition and the criterion of the Lie symmetry of the generalized Birkhoffian system are established, and the Hojman conserved quantity directly derived from the Lie symmetry of the system is given. Finally, by using the invariance that the dynamical functions in the differential equations of the motion of mechanical systems still satisfy the equations after undergoing the infinitesimal transformations, the definition and the criterion of the Mei symmetry of the generalized Birkhoffian system are presented, and the Mei conserved quantity directly derived from the Mei symmetry of the system is obtained. Some examples are given to illustrate the application of the results.
文摘Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints are investigated. Appell equations and differential equations of motion for holonomie mechanic systems with unilateral constraints axe established. The definition and the criterion of Mei symmetry for Appell equations in holonomic systems with unilateral constraints under the infinitesimal transformations of groups axe also given. The expressions of the structural equation and Mei conserved quantity of Mei symmetry for Appell equations in holonomic systems with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Nos.11972241,11572212 and 11272227)the Natural Science Foundation of Jiangsu Province(No. BK20191454)。
文摘In order to investigate the dynamic behavior of non-conservative systems,the Lie symmetries and conserved quantities of fractional Birkhoffian dynamics based on quasi-fractional dynamics model are proposed and studied.The quasi-fractional dynamics model here refers to the variational problem based on the definition of RiemannLiouville fractional integral(RLFI),the variational problem based on the definition of extended exponentially fractional integral(EEFI),and the variational problem based on the definition of fractional integral extended by periodic laws(FIEPL).First,the fractional Pfaff-Birkhoff principles based on quasi-fractional dynamics models are established,and the corresponding Birkhoff’s equations and the determining equations of Lie symmetry are obtained.Second,for fractional Birkhoffian systems based on quasi-fractional models,the conditions and forms of conserved quantities are given,and Lie symmetry theorems are proved.The Pfaff-Birkhoff principles,Birkhoff’s equations and Lie symmetry theorems of quasi-fractional Birkhoffian systems and classical Birkhoffian systems are special cases of this article.Finally,some examples are given.
基金Supported by the China NSF for Distinguished Young Scholars under Grant No.10925104
文摘It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Supported by National Natural Science Foundation of China under Grant No. 10972151the Natural Science Foundation of Higher Education Institution of Jiangsu Province under Grant No. 08KJB130002
文摘This paper focuses on studying a conformal invariance and a Noether symmetry, a Lie symmetry for a Birkhoffian system in event space. The definitions of the conformal invariance of the system are given. By investigation on the relations between the conformal invariance and the Noether symmetry, the conformal invariance and the Lie symmetry, the expressions of conformal factors of the system under these circumstances are obtained. The Noether conserved quantities and the Hojman conserved quantities directly derived from the conformal invariance are given. Two examples are given to illustrate the application of the results.
基金The project supported by the Natural Science Foundation of High Education of Jiangsu Province of China under Grant No. 04KJA130135 and the "Qing Lan" Project Foundation of Jiangsu Province of China
文摘The symmetries and non-Noether conservation laws of Birkhoffian system with unilateral constraints are studied. The differential equations of motion of the system are established, and the criterions of Noether symmetry, Lie symmetry and Mei symmetry of the system are given. Two types of new conservation laws, called the Hojman conservation law and the Mei conservation law respectively, are obtained, and the intrinsic relations among the symmetries and the new conservation laws are researched. At the end of the paper, an example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.