With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usi...With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.展开更多
A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Ves...A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and Nizhnik Novikov-Vesselov equation, both the Lie point symmetry groups and the non-Lie symmetry groups are obtained. The Lie symmetry groups obtained via traditional Lie approaches are only speciai cases. Furthermore, the expressions of the exact finite transformations of the Lie groups are much simpler than those obtained via the standard approaches.展开更多
The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corre...The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.展开更多
Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the...Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the Konopelchenk-Dubrovsky (KD) equation are obtained. From the theorem, some exact solutions of KD equation are derived from a simple travelling wave solution and a multi-soliton solution.展开更多
Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimen...Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.展开更多
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the gr...Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.展开更多
In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto ...In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto the differential-difference equations.With the extended method,we study the well-known differential-difference KPequation,KZ equation and (2+1)-dimensional ANNV system,and both the Lie point symmetry groups and the non-Liesymmetry groups are obtained.展开更多
Applying the Lie group method to the differential-difference equation, the Lie point symmetry of Blaszak- Marciniak four-field Lattice equation is obtained. Using the obtained symmetry, the similarity reduction equati...Applying the Lie group method to the differential-difference equation, the Lie point symmetry of Blaszak- Marciniak four-field Lattice equation is obtained. Using the obtained symmetry, the similarity reduction equations of Blaszak-Marciniak four-field Lattice equation are derived. Solving the reduction, we get the solution of Blaszak-Marciniak four-field Lattice equation which not only recovers one of the solutions obtained by Ma and Hu [J. Math. Phys. 40 (1999) 6071] but also has the singularity when we choose the arbitrary constants accurately.展开更多
In this paper, a new modified extended tanh-function method is presented for constructing soliton-like,periodic form solutions of nonlinear evolution equation (NEEs). This method is more powerful than the extended tan...In this paper, a new modified extended tanh-function method is presented for constructing soliton-like,periodic form solutions of nonlinear evolution equation (NEEs). This method is more powerful than the extended tanhfunction method [Phys. Lett. A277 (2000) 212] and the moditied extended tanh-function method [Phys. Lett. A285(2001) 355]. Abundant new solutions of two physically important NEEs are obtained by using this method and symbolic computation system Maple.展开更多
In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro ...In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro algebra.展开更多
We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of sim...We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of similarity solutions are obtained.展开更多
By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial dif...By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.展开更多
Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)-...Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)- dimensional dispersive long-wave equations are obtained.展开更多
The distortion theorem for biholomorphic staxlike mappings(with respect to origin) inbounded symmetric domains are given.The distortion theorem for locally biholomorphic convexmappings in bounded symmetric domains are...The distortion theorem for biholomorphic staxlike mappings(with respect to origin) inbounded symmetric domains are given.The distortion theorem for locally biholomorphic convexmappings in bounded symmetric domains are given also.展开更多
In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one ine...In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.展开更多
基金Supported by National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF 11076015)
文摘With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.
基金The project supported by the National 0utstanding Youth Foundation of China under Grant No. 19925522 and the National Natural Science Foundation of China under Grant Nos. 90203001, 10475055. The authors are in debt to thank helpful discussions with Drs. X.Y. Tang, C.L. Chen, Y. Chen, H.C. Hu, X.M. Qian, B. Tong, and W.R. Cai.
文摘A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and Nizhnik Novikov-Vesselov equation, both the Lie point symmetry groups and the non-Lie symmetry groups are obtained. The Lie symmetry groups obtained via traditional Lie approaches are only speciai cases. Furthermore, the expressions of the exact finite transformations of the Lie groups are much simpler than those obtained via the standard approaches.
基金supported by National Natural Science Foundation of China under Grant Nos.10475055 and 90503006
文摘The symmetries of a (2+1)-dimensional shallow water wave system, which is newly constructed through applying variation principle of analytic mechanics, are researched in this paper. The Lie symmetries and the corresponding reductions are obtained by means of classical Lie group approach. The (1+1) dimensional displacement shallow water wave equation can be derived from the reductions when special symmetry parameters are chosen.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundations of China under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A610017National Basic Research Program of China (973 Program 2007CB814800)Shanghai Leading Academic Discipline Project under Grant No.B412K.C.Wong Magna Fund in Ningbo University
文摘Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the Konopelchenk-Dubrovsky (KD) equation are obtained. From the theorem, some exact solutions of KD equation are derived from a simple travelling wave solution and a multi-soliton solution.
基金Supported by the National Key Basic Research Project of China under Grant No.2010CB126600the National Natural Science Foundation of China under Grant No.60873070+2 种基金Shanghai Leading Academic Discipline Project No.B114the Postdoctoral Science Foundation of China under Grant No.20090450067Shanghai Postdoctoral Science Foundation under Grant No.09R21410600
文摘Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)- dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko Dubrovsky equations, respectively.
文摘In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto the differential-difference equations.With the extended method,we study the well-known differential-difference KPequation,KZ equation and (2+1)-dimensional ANNV system,and both the Lie point symmetry groups and the non-Liesymmetry groups are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No.10735030the National Natural Science Foundation of China under Grant No.90718041+1 种基金Shanghai Leading Academic Discipline Project under Grant No.B412Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘Applying the Lie group method to the differential-difference equation, the Lie point symmetry of Blaszak- Marciniak four-field Lattice equation is obtained. Using the obtained symmetry, the similarity reduction equations of Blaszak-Marciniak four-field Lattice equation are derived. Solving the reduction, we get the solution of Blaszak-Marciniak four-field Lattice equation which not only recovers one of the solutions obtained by Ma and Hu [J. Math. Phys. 40 (1999) 6071] but also has the singularity when we choose the arbitrary constants accurately.
文摘In this paper, a new modified extended tanh-function method is presented for constructing soliton-like,periodic form solutions of nonlinear evolution equation (NEEs). This method is more powerful than the extended tanhfunction method [Phys. Lett. A277 (2000) 212] and the moditied extended tanh-function method [Phys. Lett. A285(2001) 355]. Abundant new solutions of two physically important NEEs are obtained by using this method and symbolic computation system Maple.
文摘In this paper, the classical Lie group approach is extended to find some Lie point symmetries of differentialdifference equations. It reveals that the obtained Lie point symmetries can constitute a Kac-Moody-Virasoro algebra.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10475055 and 10547124 and partly by Shanghai Leading Academic Discipline Project under Grant No. T0401.Acknowledgments The authors would like to thank Prof. S.Y. Lou for his helpful discussions.
文摘We study the symmetries of a (2+1)-dimensional generalized Broer-Kaup system by means of the classical Lie group theory. The corresponding group algebra is constructed. Based on the symmetries, severaJ types of similarity solutions are obtained.
文摘By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.
基金supported by the Natural Science Foundation of Shandong Province of China under Grant Nos.Q2005A01
文摘Using the modified CK's direct method, we derive a symmetry group theorem of (2+1)-dimensional dispersive long-wave equations. Based upon the theorem, Lie point symmetry groups and new exact solutions of (2+1)- dimensional dispersive long-wave equations are obtained.
文摘The distortion theorem for biholomorphic staxlike mappings(with respect to origin) inbounded symmetric domains are given.The distortion theorem for locally biholomorphic convexmappings in bounded symmetric domains are given also.
基金supported by National Natural Science Foundation of China (Grant Nos.11001240, 10926082)the Natural Science Foundation of Zhejiang Province (Grant Nos. Y6090359, Y6090383)+1 种基金the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 10925104)the Natural Science Foundation of Shaanxi Province (Grant No. 2009JQ1003)
文摘In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.