期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于倒谱-对称点图谱-卷积神经网络的内燃机增压器滚动轴承故障诊断
1
作者 孙英淳 唐斌 蔡先阳 《内燃机工程》 CAS CSCD 北大核心 2023年第6期69-76,共8页
针对内燃机增压器滚动轴承振动信号易受噪声影响、故障特征微弱的问题,提出了一种基于倒谱(cepstrum)-对称点图谱(symmetrizeddotpattern,SDP)-卷积神经网络(convolution neural network,CNN)的智能故障诊断方法。通过倒谱对原始信号进... 针对内燃机增压器滚动轴承振动信号易受噪声影响、故障特征微弱的问题,提出了一种基于倒谱(cepstrum)-对称点图谱(symmetrizeddotpattern,SDP)-卷积神经网络(convolution neural network,CNN)的智能故障诊断方法。通过倒谱对原始信号进行故障特征提取,获取能够反映滚动轴承故障类型的特征向量。然后应用对称点图谱方法将一维倒谱数据映射到极坐标空间,并进行灰度化处理得到SDP特征灰度图,将特征图导入到卷积神经网络进行特征挖掘和故障识别。最后通过滚动轴承外滚道、内滚道和滚动体出现损伤的故障试验,构建了9类故障状态原始信号,验证了基于倒谱-SDP-CNN的智能故障诊断方法。结果表明:倒谱-SDP-CNN方法具有运算简便、快捷、受噪声影响较小等优点,对试验测试集的故障识别准确率达到97.5%,可以较为准确地诊断增压器滚动轴承的故障状态和严重程度。 展开更多
关键词 滚动轴承 故障诊断 倒谱 对称点图谱 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部