期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于PCM聚类算法的Blog社区发现 被引量:5
1
作者 柳助民 李绍滋 +2 位作者 林达真 柯逍 曹冬林 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期508-513,共6页
针对传统的社区发现算法无法发现社区中的核心成员和边界成员的缺点,提出了基于PCM聚类算法的Blog社区发现算法,用来识别Blog社区的核心和边界.首先,使用随机行走的方法计算可以衡量两个Blog亲密度的对称社会距离;然后,在对称社区距离... 针对传统的社区发现算法无法发现社区中的核心成员和边界成员的缺点,提出了基于PCM聚类算法的Blog社区发现算法,用来识别Blog社区的核心和边界.首先,使用随机行走的方法计算可以衡量两个Blog亲密度的对称社会距离;然后,在对称社区距离的基础上使用PCM聚类算法对Blog进行聚类,得到每个社区中的成员属于社区的概率表示.最后,通过确定相应的概率阈值,确定社区的核心和边界.实验结果表明:该算法能够获得社区中的成员属于社区的概率,根据这个概率可以确定社区中的核心成员和边界成员. 展开更多
关键词 Blog社区发现 随机行走 对称社会距离 PCM聚类算法
下载PDF
结合中心约束改进聚类算法的社区发现技术
2
作者 夏洋洋 刘渊 黄亚东 《计算机工程与应用》 CSCD 北大核心 2018年第8期265-270,共6页
进行社区发现时,首先从某一节点开始进行随机行走,计算两个节点之间的对称社会距离,并用此距离来分析两个用户节点之间的相关性。社交网络中存在着关系不均匀的现象,有些个体之间关系非常稠密,而有些却异常稀疏,由此构成的虚拟社区需要... 进行社区发现时,首先从某一节点开始进行随机行走,计算两个节点之间的对称社会距离,并用此距离来分析两个用户节点之间的相关性。社交网络中存在着关系不均匀的现象,有些个体之间关系非常稠密,而有些却异常稀疏,由此构成的虚拟社区需要用特定的社区发现技术进行挖掘。前人提出过利用可能性C均值聚类算法(PCM)和处理好的社会距离进行社区发现,但通过虚拟社区算法评价的准确度指标发现,对于数据量大,数据粘性强的数据,其聚类效果并不理想。而聚类中心的好坏直接决定着聚类性能的好与坏,因此利用类中心约束方法对PCM算法进行改进,得到的新型聚类算法更加适用于真实网络数据集。实验针对真实数据集,利用准确度指标进行了验证。 展开更多
关键词 对称社会距离 随机行走 可能性C均值算法 准确度指标
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部