Combining the characteristics of peer-to-peer (P2P) and grid, a super-peer selection algorithm--SSABC is presented in the distributed network merging P2P and grid. The algorithm computes nodes capacities using their...Combining the characteristics of peer-to-peer (P2P) and grid, a super-peer selection algorithm--SSABC is presented in the distributed network merging P2P and grid. The algorithm computes nodes capacities using their resource properties provided by a grid monitoring and discovery system, such as available bandwidth, free CPU and idle memory, as well as the number of current connections and online time. when a new node joins the network and the super-peers are all saturated, it should select a new super-peer from the new node or joined nodes with the highest capacity. By theoretical analyses and simulation experiments, it is shown that super-peers selected by capacity can achieve higher query success rates and shorten the average hop count when compared with super-peers selected randomly, and they can also balance the network load when all super-peers are saturated. When the number of total nodes changes, the conclusion is still valid, which explains that the algorithm SSABC is feasible and stable.展开更多
基金The National High Technology Research and Development Program of China (863 Program) (No.2007AA01Z422)the NaturalFoundation of Anhui Provincial Education Department (No.2006KJ041B,KJ2007B073)
文摘Combining the characteristics of peer-to-peer (P2P) and grid, a super-peer selection algorithm--SSABC is presented in the distributed network merging P2P and grid. The algorithm computes nodes capacities using their resource properties provided by a grid monitoring and discovery system, such as available bandwidth, free CPU and idle memory, as well as the number of current connections and online time. when a new node joins the network and the super-peers are all saturated, it should select a new super-peer from the new node or joined nodes with the highest capacity. By theoretical analyses and simulation experiments, it is shown that super-peers selected by capacity can achieve higher query success rates and shorten the average hop count when compared with super-peers selected randomly, and they can also balance the network load when all super-peers are saturated. When the number of total nodes changes, the conclusion is still valid, which explains that the algorithm SSABC is feasible and stable.