All-organic thin-film field-effect transistor was prepared on flexible poly(ethylene-terephthalate) (PET) substrate. Poly(methyl-methacrylate) (PMMA) and pentacene are used as a dielectric layer and a semiconductor la...All-organic thin-film field-effect transistor was prepared on flexible poly(ethylene-terephthalate) (PET) substrate. Poly(methyl-methacrylate) (PMMA) and pentacene are used as a dielectric layer and a semiconductor layer, respectively. The hole mobility of the transistor can reach 2.10×10-2 cm2/Vs, and the on/off current ratio was larger than 105. The performances of the transistor, when the substrate is cured under different radius, were also measured. It was found that the device performance did not change when the curly direction was vertical to the channel length direction and when the curly direction was parallel to the channel length direction with 3.67 cm curvature radius, the mobility of the device increased by more than 20% and the on/off ratio decreased more than one order.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.50173014 and 90101029).
文摘All-organic thin-film field-effect transistor was prepared on flexible poly(ethylene-terephthalate) (PET) substrate. Poly(methyl-methacrylate) (PMMA) and pentacene are used as a dielectric layer and a semiconductor layer, respectively. The hole mobility of the transistor can reach 2.10×10-2 cm2/Vs, and the on/off current ratio was larger than 105. The performances of the transistor, when the substrate is cured under different radius, were also measured. It was found that the device performance did not change when the curly direction was vertical to the channel length direction and when the curly direction was parallel to the channel length direction with 3.67 cm curvature radius, the mobility of the device increased by more than 20% and the on/off ratio decreased more than one order.