电催化二氧化碳(CO_(2))还原被认为是将CO_(2)转化为可再生能源产品的一种有前途的方法。开发性能优异的电催化剂高效完成这一重要反应是关键。镍基催化剂广泛应用于电催化CO_(2)还原研究,但是,镍纳米颗粒经常表现较差的催化性能。在本...电催化二氧化碳(CO_(2))还原被认为是将CO_(2)转化为可再生能源产品的一种有前途的方法。开发性能优异的电催化剂高效完成这一重要反应是关键。镍基催化剂广泛应用于电催化CO_(2)还原研究,但是,镍纳米颗粒经常表现较差的催化性能。在本文中,通过在氮气气氛中高温热解镍基金属有机骨架(MOF)、尿素和炭黑混合物,获得了镍纳米颗粒负载于多孔碳氮中的催化材料(NiNPs-NC)。有趣的是,NiNPs-NC在H型和流动相电池中都表现出优异的CO_(2)电还原性能。在H型电解池和-0.67–-1.07 V vs.RHE(可逆氢电极)电位窗口内,NiNPs-NC催化CO_(2)还原为CO的法拉第效率大于90%,其中,在-0.87 V vs.RHE时,CO的法拉第效率约为100%。在流动相电解池和-0.50–-0.70 V vs.RHE电位窗口内,NiNPs-NC催化CO_(2)还原为CO的选择性大于95%。电化学阻抗谱图和塔菲尔斜率表征显示,NiNPs-NC的高催化活性归因于其在催化过程中的快速电荷转移。本文提供了一种制备高效CO_(2)电还原催化剂的方法。展开更多
通过扩大H型反应器,利用面积超过100 cm 2的铟金属片和锡金属片电极电催化还原二氧化碳制甲酸。从二氧化碳还原反应产物的选择性、电解能力等方面进行了研究,得到了大尺寸金属电极反应器电催化制甲酸的优化方法。结果表明,进气流量40 mL...通过扩大H型反应器,利用面积超过100 cm 2的铟金属片和锡金属片电极电催化还原二氧化碳制甲酸。从二氧化碳还原反应产物的选择性、电解能力等方面进行了研究,得到了大尺寸金属电极反应器电催化制甲酸的优化方法。结果表明,进气流量40 mL/min和电流密度-3.0~-4.5 mA/cm^(2)区间及中性电解质为反应的最佳条件。展开更多
亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C_(1)至C_(3)衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以...亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C_(1)至C_(3)衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以达到工业级电流密度(大于300 mA·cm^(-2))。研究表明,氢氧化物/羟基氧化物催化的甘油氧化反应通过间接氧化机理进行,即通过电生成的含有亲电吸附氧的羟基氧化物氧化亲核试剂(甘油)。因此,理解甘油氧化反应中电催化剂的演变至关重要。在本文中,通过循环伏安法活化钼酸镍(NiMoO_(4)),开发了一种钼掺杂的羟基氧化镍(Mo-NiOOH)催化剂。通过多种表征方法对Mo-NiOOH进行了系统表征,结果显示,Mo-NiOOH继承了NiMoO_(4)前驱体的纳米片阵列形貌,但Mo含量降低,证明循环伏安法活化后实现了从氧化物到羟基氧化物的相重构。此外,Mo-NiOOH中Ni^(3+)/Ni^(2+)的比例高于循环伏安法活化制备的NiOOH。在活化过程中,Mo物种从NiMoO_(4)中浸出,制备得到的Mo-NiOOH保留了NiMoO_(4)前驱体的纳米片阵列形貌。与氢氧化镍(Ni(OH)_(2))经循环伏安法活化合成的NiOOH相比,Mo-NiOOH具有更高的Ni^(3+)/Ni^(2+)比例以及更高的电化学比表面积(ECSAs),且促进了Ni^(2+)氧化为Ni^(3+)。因此,Mo-NiOOH达到高电流密度(400mA·cm^(-2))的电位(1.51V vs.RHE)低于NiOOH(1.84 V vs.RHE)。此外,Mo-NiOOH表现出高于NiOOH的甲酸盐法拉第效率(84.7%vs.59.6%),表明钼掺杂加速了碳-碳键断裂。多电位阶跃实验显示,NiOOH和Mo-NiOOH催化的甘油电氧化通过类似的羟基氧化物介导的间接氧化机理进行。原位电化学阻抗谱和原位拉曼光谱证实,Mo掺杂促进了甘油氧化反应动力学以及Ni^(2+)氧化为Ni^(3+)的过程,导致Mo-NiOOH比NiOOH具有更高的活性和甲酸选择性。本研究通过可溶性阴离子浸出策略来调节羟基氧化物表面结构,为设计高性能亲核氧化反应电催化剂提供了指导。展开更多
文摘电催化二氧化碳(CO_(2))还原被认为是将CO_(2)转化为可再生能源产品的一种有前途的方法。开发性能优异的电催化剂高效完成这一重要反应是关键。镍基催化剂广泛应用于电催化CO_(2)还原研究,但是,镍纳米颗粒经常表现较差的催化性能。在本文中,通过在氮气气氛中高温热解镍基金属有机骨架(MOF)、尿素和炭黑混合物,获得了镍纳米颗粒负载于多孔碳氮中的催化材料(NiNPs-NC)。有趣的是,NiNPs-NC在H型和流动相电池中都表现出优异的CO_(2)电还原性能。在H型电解池和-0.67–-1.07 V vs.RHE(可逆氢电极)电位窗口内,NiNPs-NC催化CO_(2)还原为CO的法拉第效率大于90%,其中,在-0.87 V vs.RHE时,CO的法拉第效率约为100%。在流动相电解池和-0.50–-0.70 V vs.RHE电位窗口内,NiNPs-NC催化CO_(2)还原为CO的选择性大于95%。电化学阻抗谱图和塔菲尔斜率表征显示,NiNPs-NC的高催化活性归因于其在催化过程中的快速电荷转移。本文提供了一种制备高效CO_(2)电还原催化剂的方法。
文摘通过扩大H型反应器,利用面积超过100 cm 2的铟金属片和锡金属片电极电催化还原二氧化碳制甲酸。从二氧化碳还原反应产物的选择性、电解能力等方面进行了研究,得到了大尺寸金属电极反应器电催化制甲酸的优化方法。结果表明,进气流量40 mL/min和电流密度-3.0~-4.5 mA/cm^(2)区间及中性电解质为反应的最佳条件。
文摘亲核氧化反应在可持续生产增值化学品中扮演着重要角色。电催化甘油氧化反应作为亲核氧化反应的一种重要类型,可以制得包括甲酸在内的C_(1)至C_(3)衍生产物。非贵金属氢氧化物/羟基氧化物被广泛应用于甘油氧化反应,但在中等电位下难以达到工业级电流密度(大于300 mA·cm^(-2))。研究表明,氢氧化物/羟基氧化物催化的甘油氧化反应通过间接氧化机理进行,即通过电生成的含有亲电吸附氧的羟基氧化物氧化亲核试剂(甘油)。因此,理解甘油氧化反应中电催化剂的演变至关重要。在本文中,通过循环伏安法活化钼酸镍(NiMoO_(4)),开发了一种钼掺杂的羟基氧化镍(Mo-NiOOH)催化剂。通过多种表征方法对Mo-NiOOH进行了系统表征,结果显示,Mo-NiOOH继承了NiMoO_(4)前驱体的纳米片阵列形貌,但Mo含量降低,证明循环伏安法活化后实现了从氧化物到羟基氧化物的相重构。此外,Mo-NiOOH中Ni^(3+)/Ni^(2+)的比例高于循环伏安法活化制备的NiOOH。在活化过程中,Mo物种从NiMoO_(4)中浸出,制备得到的Mo-NiOOH保留了NiMoO_(4)前驱体的纳米片阵列形貌。与氢氧化镍(Ni(OH)_(2))经循环伏安法活化合成的NiOOH相比,Mo-NiOOH具有更高的Ni^(3+)/Ni^(2+)比例以及更高的电化学比表面积(ECSAs),且促进了Ni^(2+)氧化为Ni^(3+)。因此,Mo-NiOOH达到高电流密度(400mA·cm^(-2))的电位(1.51V vs.RHE)低于NiOOH(1.84 V vs.RHE)。此外,Mo-NiOOH表现出高于NiOOH的甲酸盐法拉第效率(84.7%vs.59.6%),表明钼掺杂加速了碳-碳键断裂。多电位阶跃实验显示,NiOOH和Mo-NiOOH催化的甘油电氧化通过类似的羟基氧化物介导的间接氧化机理进行。原位电化学阻抗谱和原位拉曼光谱证实,Mo掺杂促进了甘油氧化反应动力学以及Ni^(2+)氧化为Ni^(3+)的过程,导致Mo-NiOOH比NiOOH具有更高的活性和甲酸选择性。本研究通过可溶性阴离子浸出策略来调节羟基氧化物表面结构,为设计高性能亲核氧化反应电催化剂提供了指导。