期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于对角化LDPC压缩感知和k-近邻算法的广域系统宽频振荡监测方法 被引量:15
1
作者 冯双 崔昊 +4 位作者 吴熙 冯俊杰 邹常跃 赵晓斌 汤奕 《电网技术》 EI CSCD 北大核心 2021年第8期3025-3033,共9页
在“双高”电力系统中,宽频振荡的发生概率大大增加。然而,传统基于广域测量系统(wide area measurement system,WAMS)的振荡监测方法一方面监测的振荡频带范围过窄,另一方面其准确性和快速性难以适应复杂的电网运行状态。因此提出一种... 在“双高”电力系统中,宽频振荡的发生概率大大增加。然而,传统基于广域测量系统(wide area measurement system,WAMS)的振荡监测方法一方面监测的振荡频带范围过窄,另一方面其准确性和快速性难以适应复杂的电网运行状态。因此提出一种基于对角化低密度奇偶校验码(low-density parity-check codes,LDPC)校验矩阵和k-近邻算法(k-nearest neighbor,KNN)的宽频振荡监测方法。首先,基于对角化LDPC校验矩阵对电力系统信号进行压缩采样,大大减少了宽频振荡的数据传输量,有利于在现有相量测量单元(phasor measurement unit,PMU)上传频率下实现几百Hz的宽频振荡数据的传输。在此基础上,主站直接基于压缩采样值作为输入特征,采用加权KNN算法进行振荡检测,避免了人为设置阈值带来的误判,提高了振荡检测的快速性和准确性。最后,根据振荡检测结果,采用正交匹配追踪(orthogonal matching pursuit,OMP)算法,在主站准确重构宽频振荡信号,便于广域系统的振荡全局性分析。仿真结果表明所提方法在噪声、数据缺失和数据有误等情况下,仍然能够实现宽频振荡信号的快速准确监测。 展开更多
关键词 宽频振荡监测 压缩感知技术 对角化ldpc K-近邻算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部