期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
齐次可微函数的对角递减性与一类不等式的证明
1
作者 姚勇 王挽澜 秦小林 《西南民族大学学报(自然科学版)》 CAS 2020年第5期542-550,共9页
研究了齐次可微函数的对角递减性.对角递减性可以被使用去证明许多不等式,如算术-几何(A-G)平均不等式, Schur不等式, Suranyi不等式等等.文中计算出了对角递减函数在非负三元二次型中出现的概率约为57%.为了弥补对角递减性的不足引入... 研究了齐次可微函数的对角递减性.对角递减性可以被使用去证明许多不等式,如算术-几何(A-G)平均不等式, Schur不等式, Suranyi不等式等等.文中计算出了对角递减函数在非负三元二次型中出现的概率约为57%.为了弥补对角递减性的不足引入了分块对角递减性的概念.证明了在标准单形上严格正的齐次多项式都是分块对角递减函数. 展开更多
关键词 齐次可微函数 对角递减函数 不等式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部