Considering the effects of particle crushing and intermediate principal stress on material yielding strength, the spatial mobilization plane(SMP) yielding criterion and state parameter model including a general critic...Considering the effects of particle crushing and intermediate principal stress on material yielding strength, the spatial mobilization plane(SMP) yielding criterion and state parameter model including a general critical state line are selected in the analysis of cylindrical cavity expansion.Meanwhile, combining Rowe s flow rule and Bolton s simplification to stress-dilatancy relationship to reflect soil shear dilatancy and softening behavior, this paper analyzes the problem of cylindrical cavity expansion i...展开更多
This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative pictu...This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative picture of the main features of interest for impingement type of flows. The experiments were carried out for a Reynolds number based on the jet exit conditions of Rej = 4.3 × 10^4, an impingement height of 20.1 jet diameters and for a velocity ratio between the jet exit and the crossflow VR = V/Uo of 22.5. The rear jet is located at S = 6 D downstream of the first jet. The results show a large penetration of the first (upstream)jet that is deflected by the crossflow and impinges on the ground, giving rise to a ground vortex due to the collision of the radial wall and the crossflow that wraps around the impinging point like a scarf. The rear jet (located downstream) it is not so affected by the crossflow in terms of deflection, but due to the downstream wall jet that flows radially from the impinging point of the first jet it does not reach the ground. The results indicate a new flow pattern not yet reported so far, that for a VSTOL aircraft operating in ground vicinity with front wind or small forward movement may result in enhanced under pressures in the aft part of the aircraft causing a suction down force and a change of the pitching moment towards the ground.展开更多
The influence of water temperature on protein composition in the reconstitution of milk powder was evaluated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 11 ion ...The influence of water temperature on protein composition in the reconstitution of milk powder was evaluated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 11 ion peaks in the matrix-assisted laser desorption/ionization (MALDI) spectra were examined to study the alteration of relative quantities of milk proteins when water at different temperature was employed in the reconstitution of milk powder. A discrepancy factor Dij was implemented to represent the degree of milk proteins' denaturation. Data obtained indicated that Dij value increased with rising water temperature, and thermal damage to milk proteins became evidently when the water temperature exceeded 60℃. The results confirmed that nutrient loss occurred when milk proteins denatured in water at high temperatures.展开更多
To achieve the satellite formation control and the succeed formation missions, we present a new stealthy method to determine the relative states between formation satellites. In this method, the combination of a CCD c...To achieve the satellite formation control and the succeed formation missions, we present a new stealthy method to determine the relative states between formation satellites. In this method, the combination of a CCD camera and laser radar is used as the relative measure sensors. To reduce electromagnetic radiation, the laser radar works intermittently to minimize the probability of being discovered. And an unscented Kalman filter (UKF) is applied to estimate the relative states. The observability of this method is analyzed. The validity and effectiveness of the method is demonstrated in a typical application of formation relative navigation.展开更多
To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The res...To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The results show the roll is static unstable in small angles; the roll dynamic test curves present obvious non-linearity characteristics, and the model vibrates violently even When the angle of attack is small, which may be provoked by the non-symmetry transition from the small transverse flow around the nose of model. Subsequent research adopts longitudinal trips to generate symmetry transition at the fore-body of the model. As a result, the lateral stability of the aircrafts is apparently improved. The results show that the lateral stability of hypersonic aircrafts is very weak, and the main reason for this is lateral perturbation of flow over the nose, among which asymmetric transition weighs the most. Adoption of longitudinal trips could spur fixed transition of lateral flow, reduce the transition asymmetry of lateral flow, and strengthen the lateral stability of hypersonic aircrafts at the same time.展开更多
Let D be a nontrivial 2-(v, k, 3) symmetric design (triplane) and let G≤Aut(D) be flag-transitive and point-primitive. In this paper, we prove that if G is an affine group, then G≤AΓL1(q), where q is some power of ...Let D be a nontrivial 2-(v, k, 3) symmetric design (triplane) and let G≤Aut(D) be flag-transitive and point-primitive. In this paper, we prove that if G is an affine group, then G≤AΓL1(q), where q is some power of a prime p and p≥5.展开更多
When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is...When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is aimed at mapping the global gravity field and its variation. Accurate baseline of GRACE satellites is necessary for the gravity field modeling. The determination of kinematic and reduced dynamic relative orbits of twin satellites has been studied in this paper, and an accuracy of 2 mm for dynamic relative orbits and 5 mm for kinematic ones can be obtained, whereby most of the double difference onboard GPS ambiguities are resolved.展开更多
A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper.The engineering method is used to calculate inviscid hypersonic flowfields to reduce tim...A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper.The engineering method is used to calculate inviscid hypersonic flowfields to reduce time cost,and a combination of the mass flow balance technique and the axisymmetric analog is proposed to account for the entropy swallowing effects.A three-dimensional linear method is derived to fit the vehicle surface flowfields.Then a new axisymmetric analog method based on linear flowfields and linear surface equations is developed,with the complexity and computational cost reduced dramatically.In the stagnation region,an implicit surface fitting is introduced to approximate the primary curvatures and a robust aeroheating prediction method is constructed.The proposed approach is verified on a variety of configurations including spherically blunted cone,double ellipsoid and aerospace vehicle.Numerical results indicate the followings:1)The approach predicts aeroheating in about one second and the results agree well with CFD simulations and wind-tunnel measurements;2)with the help of entropy correction,the precision is further improved in the streamline diverging regions on the vehicle surface,while little improvement is found after entropy correction in the regions where the streamlines do not diverge.展开更多
Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleopera...Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.展开更多
The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect...The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.展开更多
We calculate the large mass dileptons production from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) energies.The jetd...We calculate the large mass dileptons production from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) energies.The jetdilepton production exceeds the thermal and Drell Yan dilepton production in the large mass region of 4.5 GeV展开更多
基金Supported by National Natural Science Foundation of China (No. 50639010)PhD Start-up Research Fund of Northeast Dianli University (2010)
文摘Considering the effects of particle crushing and intermediate principal stress on material yielding strength, the spatial mobilization plane(SMP) yielding criterion and state parameter model including a general critical state line are selected in the analysis of cylindrical cavity expansion.Meanwhile, combining Rowe s flow rule and Bolton s simplification to stress-dilatancy relationship to reflect soil shear dilatancy and softening behavior, this paper analyzes the problem of cylindrical cavity expansion i...
文摘This paper presents a detailed analysis of the complex flow beneath two impinging jets aligned with a low-velocity crossflow which is relevant for the future F-35 VSTOL configuration, and provides a quantitative picture of the main features of interest for impingement type of flows. The experiments were carried out for a Reynolds number based on the jet exit conditions of Rej = 4.3 × 10^4, an impingement height of 20.1 jet diameters and for a velocity ratio between the jet exit and the crossflow VR = V/Uo of 22.5. The rear jet is located at S = 6 D downstream of the first jet. The results show a large penetration of the first (upstream)jet that is deflected by the crossflow and impinges on the ground, giving rise to a ground vortex due to the collision of the radial wall and the crossflow that wraps around the impinging point like a scarf. The rear jet (located downstream) it is not so affected by the crossflow in terms of deflection, but due to the downstream wall jet that flows radially from the impinging point of the first jet it does not reach the ground. The results indicate a new flow pattern not yet reported so far, that for a VSTOL aircraft operating in ground vicinity with front wind or small forward movement may result in enhanced under pressures in the aft part of the aircraft causing a suction down force and a change of the pitching moment towards the ground.
文摘The influence of water temperature on protein composition in the reconstitution of milk powder was evaluated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). 11 ion peaks in the matrix-assisted laser desorption/ionization (MALDI) spectra were examined to study the alteration of relative quantities of milk proteins when water at different temperature was employed in the reconstitution of milk powder. A discrepancy factor Dij was implemented to represent the degree of milk proteins' denaturation. Data obtained indicated that Dij value increased with rising water temperature, and thermal damage to milk proteins became evidently when the water temperature exceeded 60℃. The results confirmed that nutrient loss occurred when milk proteins denatured in water at high temperatures.
文摘To achieve the satellite formation control and the succeed formation missions, we present a new stealthy method to determine the relative states between formation satellites. In this method, the combination of a CCD camera and laser radar is used as the relative measure sensors. To reduce electromagnetic radiation, the laser radar works intermittently to minimize the probability of being discovered. And an unscented Kalman filter (UKF) is applied to estimate the relative states. The observability of this method is analyzed. The validity and effectiveness of the method is demonstrated in a typical application of formation relative navigation.
文摘To have a deep understanding of the lateral stability of hypersonic lifting-configurations, wind-tunnel tests of roll static and dynamic stability for typical hypersonic lifting-configurations are carried out. The results show the roll is static unstable in small angles; the roll dynamic test curves present obvious non-linearity characteristics, and the model vibrates violently even When the angle of attack is small, which may be provoked by the non-symmetry transition from the small transverse flow around the nose of model. Subsequent research adopts longitudinal trips to generate symmetry transition at the fore-body of the model. As a result, the lateral stability of the aircrafts is apparently improved. The results show that the lateral stability of hypersonic aircrafts is very weak, and the main reason for this is lateral perturbation of flow over the nose, among which asymmetric transition weighs the most. Adoption of longitudinal trips could spur fixed transition of lateral flow, reduce the transition asymmetry of lateral flow, and strengthen the lateral stability of hypersonic aircrafts at the same time.
基金supported by National Natural Science Foundation of China (Grant No. 11071081)
文摘Let D be a nontrivial 2-(v, k, 3) symmetric design (triplane) and let G≤Aut(D) be flag-transitive and point-primitive. In this paper, we prove that if G is an affine group, then G≤AΓL1(q), where q is some power of a prime p and p≥5.
基金Supported by the National Natural Science Foundation of China (No. 40874004, No.40504002)the National 973 Program of China (No.2006CB701301)+1 种基金the National 863 Program of China (No. 2006AA12Z326, No. 2007AA12Z345)the 111 Project(No. B07037)
文摘When formation flying spacecrafts are used as platform to gain earth oriented observation, precise baselines between these spacecrafts are always essential. Gravity recovery and climate experiment (GRACE) mission is aimed at mapping the global gravity field and its variation. Accurate baseline of GRACE satellites is necessary for the gravity field modeling. The determination of kinematic and reduced dynamic relative orbits of twin satellites has been studied in this paper, and an accuracy of 2 mm for dynamic relative orbits and 5 mm for kinematic ones can be obtained, whereby most of the double difference onboard GPS ambiguities are resolved.
基金supported by the Doctorate Creation Foundation of Northwestern Polytechnical University (Grant No. CX200902)
文摘A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper.The engineering method is used to calculate inviscid hypersonic flowfields to reduce time cost,and a combination of the mass flow balance technique and the axisymmetric analog is proposed to account for the entropy swallowing effects.A three-dimensional linear method is derived to fit the vehicle surface flowfields.Then a new axisymmetric analog method based on linear flowfields and linear surface equations is developed,with the complexity and computational cost reduced dramatically.In the stagnation region,an implicit surface fitting is introduced to approximate the primary curvatures and a robust aeroheating prediction method is constructed.The proposed approach is verified on a variety of configurations including spherically blunted cone,double ellipsoid and aerospace vehicle.Numerical results indicate the followings:1)The approach predicts aeroheating in about one second and the results agree well with CFD simulations and wind-tunnel measurements;2)with the help of entropy correction,the precision is further improved in the streamline diverging regions on the vehicle surface,while little improvement is found after entropy correction in the regions where the streamlines do not diverge.
文摘Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)
文摘The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.
基金Supported by the Natural Science Foundation of the Education Department of Yunnan Province of China under Grant No.2012Y274Science Foundation of Dianxi Science and Technology Normal University under Grant No.LCSZL2013004
文摘We calculate the large mass dileptons production from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) energies.The jetdilepton production exceeds the thermal and Drell Yan dilepton production in the large mass region of 4.5 GeV