期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于对span的预判断和多轮分类的实体关系抽取
1
作者 佟缘 姚念民 《计算机工程与科学》 CSCD 北大核心 2024年第5期916-928,共13页
针对自然语言处理领域中的实体识别和关系抽取任务,提出一种对词元序列(Token Sequence,又称span)进行预测的模型Smrc。模型整体上利用BERT预训练模型作为编码器,另外包含实体预判断(Pej)、实体多轮分类(Emr)和关系多轮分类(Rmr)3个模块... 针对自然语言处理领域中的实体识别和关系抽取任务,提出一种对词元序列(Token Sequence,又称span)进行预测的模型Smrc。模型整体上利用BERT预训练模型作为编码器,另外包含实体预判断(Pej)、实体多轮分类(Emr)和关系多轮分类(Rmr)3个模块。Smrc模型通过Pej模块的初步判断及Emr模块的多轮实体分类来进行实体识别,再利用Rmr模块的多轮关系分类来判断实体对间的关系,进而完成关系抽取任务。在CoNLL04、SciERC和ADE 3个实验数据集上,Smrc模型的实体识别F1值分别达到89.67%,70.62%和89.56%,关系抽取F1值分别达到73.11%,51.03%和79.89%,相较之前在3个数据集上的最佳模型Spert,Smrc模型凭借实体预判断和实体及关系多轮分类,在2个子任务上其F1值分别提高了0.73%,0.29%,0.61%及1.64%,0.19%,1.05%,表明了该模型的有效性及其优势。 展开更多
关键词 对span的预判断 实体关系抽取 BERT训练模型 多轮实体分类 多轮关系分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部