期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
无线传感器网络路径寻优的仿真研究 被引量:1
1
作者 黄成 戴蓉 《计算机仿真》 CSCD 北大核心 2011年第9期136-139,共4页
研究无线传感器网络路径寻优问题。针对无线传感器网络路径寻优同时涉及到数据传输路径的长度、传感器节点能量以及整个网络的能量均量均衡,传统的数学模型对其进行求解存在求解时间长,速度慢,得到的路径并非最优,导致网络的能量不均衡... 研究无线传感器网络路径寻优问题。针对无线传感器网络路径寻优同时涉及到数据传输路径的长度、传感器节点能量以及整个网络的能量均量均衡,传统的数学模型对其进行求解存在求解时间长,速度慢,得到的路径并非最优,导致网络的能量不均衡,网络生命周期短。为了快速找到传感器网络最优路径,提出一种传感器路径混合寻优方法。算法首先利用遗传算法进行全局寻优,使网络最优路径稳定地分布在解空间区域,然后采用禁忌算法进行网络路径局部寻优,最后找到无线传感器最优路径。仿真结果表明,混合算法能快速找到无线传感器网络最优路径,且消耗的能量最少,有效实现了网络负载均衡,延长了网络的生命周期。 展开更多
关键词 无线传感器网络 禁忌算法 遗传算法 网络路径寻优
下载PDF
考虑样本类内不平衡的CHPOA-DBN变压器故障诊断方法 被引量:6
2
作者 王爽 罗倩 +2 位作者 唐波 姜岚 李锦 《中国电力》 CSCD 北大核心 2023年第10期133-144,共12页
为解决变压器故障样本类内不平衡与人为确定深度信念网络(deep belief network,DBN)的网络参数导致故障诊断精度低的问题,提出一种基于样本均衡和改进DBN的变压器故障诊断方法。首先,针对合成少数类过采样算法(synthesis minority overs... 为解决变压器故障样本类内不平衡与人为确定深度信念网络(deep belief network,DBN)的网络参数导致故障诊断精度低的问题,提出一种基于样本均衡和改进DBN的变压器故障诊断方法。首先,针对合成少数类过采样算法(synthesis minority oversampling technique,SMOTE)生成样本加剧类内不平衡的问题,提出基于改进K均值(improved K-means,IK-means)的IK-means SMOTE算法,据此得到类间、类内均衡的故障样本;其次,利用Tent混沌映射改进的鹈鹕优化算法(chaotic hybrid pelican optimization algorithm,CHPOA)对DBN的隐含层节点数、反向微调学习率寻优,构建CHPOA-DBN变压器故障诊断模型;最后,基于实验数据,分别将经典过采样算法、经典故障诊断模型与所提方法进行对比分析,结果表明:所提方法故障诊断准确率达到96.25%,可以为变压器故障样本不均衡条件下的故障智能诊断提供重要参考。 展开更多
关键词 变压器故障诊断 类内不平衡 样本均衡 Tent混沌映射 DBN网络参数寻优
下载PDF
一种基于森林优化的粗糙集离散化算法 被引量:3
3
作者 徐东 王鑫 +1 位作者 孟宇龙 张子迎 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第2期434-441,共8页
多维属性离散化能提升机器学习算法训练的速度与精度,目前的离散化算法性能较低且多是单属性离散,忽略了属性之间的潜在关联。基于此,提出了一种基于森林优化的粗糙集离散化算法(a discretization algorithm based on forest optimizati... 多维属性离散化能提升机器学习算法训练的速度与精度,目前的离散化算法性能较低且多是单属性离散,忽略了属性之间的潜在关联。基于此,提出了一种基于森林优化的粗糙集离散化算法(a discretization algorithm based on forest optimization and rough set,FORDA)。该算法针对多维连续属性的离散化,依据变精度粗糙集理论,设计适宜值函数,进而构建森林寻优网络,迭代搜索最优断点子集。在UCI数据集上的实验结果表明,与当前主流的离散化算法相比,所提算法能避免局部最优,显著提升了SVM分类器的分类精度,其离散化性能更为优良,且具有一定的通用性,验证了算法的有效性。 展开更多
关键词 离散化 森林优化 多维 变精度粗糙集 寻优网络 断点子集
下载PDF
Optimal path finding algorithms based on SLSD road network model 被引量:3
4
作者 张小国 王庆 龚福祥 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期558-562,共5页
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an... A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network. 展开更多
关键词 optimal path finding road network model conceptual model digital map vehicle navigation system A algorithm Dijkstra algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部