The solvo―thermal technique is used for the synthesis of [Mn(en)_3]Te_4 (I).The crystal structure has been determined by single crystal X―ray diffraction techniques. Thecrystal belongs to the monoclinic, space group...The solvo―thermal technique is used for the synthesis of [Mn(en)_3]Te_4 (I).The crystal structure has been determined by single crystal X―ray diffraction techniques. Thecrystal belongs to the monoclinic, space group p2_1/c with unit cell:a = 0. 846 1(1), b=1.5653(2),c=1.426 9(2) nm, α = 90°, β=91. 37(1) (3)°, γ=90°, V=1. 889 3(4) nm^3, and Z=4. The resultsshow that the structure contains a linear chain Zintl anion, [Te_4 ]^(2-) and a complex cation,[Mn(en)_3l^(2+). Optical studies have been performed on the powder sample of I, suggesting that thecompound is a semiconductor with a band gap of 0. 73 eV. The semiconductor properties for MnQ_2(Q=S, Se, Te) and [Mn(en)_3]Te_4 have been discussed by molecular orbital theory.展开更多
CIP (complex initial permeability) spectra of PF (polycrystalline ferrite) are studied both as intrinsic and extrinsic properties. In the former case, main steps of modeling, based on effects coming from polycryst...CIP (complex initial permeability) spectra of PF (polycrystalline ferrite) are studied both as intrinsic and extrinsic properties. In the former case, main steps of modeling, based on effects coming from polycrystal grain sizes distribution and defects, are described. The obtained relations work well in practice for PF with more or less normal MS (microstructure) and no size effects. Besides, fundamental connection between parameters of CIP and MS is found. Another case--PF with possible size effects (MnZn-ferrites) are studied experimentally for different sizes of cores, unveiling the dependence of phenomena on: dimensions of cross-section, number of turns, width of nonmagnetic gap.展开更多
In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper p...In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper pairing states: spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP), and spin triplet equal spin pairing (ESP) while including Fermi wave mismatch (FWM) and effective mass mismatch (EMM) in two sides of the nano-junction. We find that the conductance shows clearly different behaviors all depending on the symmetries of cooper pairing in a manner that the conductance spectra shows a gap-like structure, two interior dips structure and zero bias peak for SWP, OSP, and ESP, respectively. Also, the effective FS gap (Δeff) is a linear and decreasing function of exchange field. The slope of (Δeff) versus exchange field for OSP is twice the SWP. Thus, we can determine the spin polarization of N/FS nano-junction based on the dependence of (Δeff) to exchange field.展开更多
micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smal...micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.展开更多
Conventional rigid electronics are usually unconformable with soft skins and tend to fail in accurate physiological monitoring and precise treatment. Electronic skins(e-Skins) made by conductive and stretchable materi...Conventional rigid electronics are usually unconformable with soft skins and tend to fail in accurate physiological monitoring and precise treatment. Electronic skins(e-Skins) made by conductive and stretchable materials offer mechanical compliance for fabricating flexible and conformable wearables. Compared to common organic or inorganic conductive materials, gallium-based liquid metals alone own superior conductivity and compliance. Here, we demonstrate a highly conductive and stretchable electronic skin with liquid metal circuits(LMCs) embedded in silicone rubber film, which are functionalized for physiological signals monitoring. Through the designs of serpentine structure, LMCs maintained good electrical conductivity and functionality under over 100% strain. Also, a wearable electrocardiogram(ECG) recording device was fabricated and tested. The device was able to acquire steady signals during real-time measurement of physical activities. The proposed liquid metal e-Skin can be further extended to conformable bio-integrated healthcare devices and intelligent health monitoring networks.展开更多
For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied ...For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction,which is named piezotronic effect.Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications,and they are typical nonlinear elements.In this paper,a simplified current-voltage analysis solution of piezotronic transistors is developed,which can be used for circuit design and simulation.Furthermore,the typical nonlinear circuit:Chua's circuit based on piezotronic transistors is simulated.We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain.This study provides insight into the nonlinear properties of the piezotronic transistor,as well as guidance for piezotronic transistor nonlinear circuit application.展开更多
We present a first-principles theoretical study of electric field- and straincontrolled intrinsic half-metallic properties of zigzagged aluminium nitride (A1N) nanoribbons. We show that the half-metallic property of...We present a first-principles theoretical study of electric field- and straincontrolled intrinsic half-metallic properties of zigzagged aluminium nitride (A1N) nanoribbons. We show that the half-metallic property of AIN ribbons can undergo a transition into fully-metallic or semiconducting behavior with application of an electric field or uniaxial strain. An external transverse electric field induces a full charge screening that renders the material semiconducting. In contrast, as uniaxial strain varies from compressive to tensile, a spin-resolved selective self-doping increases the half-metallic character of the ribbons. The relevant strain-induced changes in electronic properties arise from band structure modifications at the Fermi level as a consequence of a spin-polarized charge transfer between p-orbitals of the N and A1 edge atoms in a spin-resolved self-doping process. This band structure tunability indicates the possibility of designing magnetic nanoribbons with tunable electronic structure by deriving edge states from elements with sufficiently different localization properties. Finite temperature molecular dynamics reveal a thermally stable half-metallic nanoribbon up to room temperature.展开更多
We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistan...We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.展开更多
文摘The solvo―thermal technique is used for the synthesis of [Mn(en)_3]Te_4 (I).The crystal structure has been determined by single crystal X―ray diffraction techniques. Thecrystal belongs to the monoclinic, space group p2_1/c with unit cell:a = 0. 846 1(1), b=1.5653(2),c=1.426 9(2) nm, α = 90°, β=91. 37(1) (3)°, γ=90°, V=1. 889 3(4) nm^3, and Z=4. The resultsshow that the structure contains a linear chain Zintl anion, [Te_4 ]^(2-) and a complex cation,[Mn(en)_3l^(2+). Optical studies have been performed on the powder sample of I, suggesting that thecompound is a semiconductor with a band gap of 0. 73 eV. The semiconductor properties for MnQ_2(Q=S, Se, Te) and [Mn(en)_3]Te_4 have been discussed by molecular orbital theory.
文摘CIP (complex initial permeability) spectra of PF (polycrystalline ferrite) are studied both as intrinsic and extrinsic properties. In the former case, main steps of modeling, based on effects coming from polycrystal grain sizes distribution and defects, are described. The obtained relations work well in practice for PF with more or less normal MS (microstructure) and no size effects. Besides, fundamental connection between parameters of CIP and MS is found. Another case--PF with possible size effects (MnZn-ferrites) are studied experimentally for different sizes of cores, unveiling the dependence of phenomena on: dimensions of cross-section, number of turns, width of nonmagnetic gap.
文摘In this study, we investigate the tunneling conductance at a finite temperature in a normal metal/ferromagnetic superconductor nano-junction where the ferromagnetic superconductor (FS) is in three different cooper pairing states: spin singlet s-wave pairing (SWP), spin triplet opposite spin pairing (OSP), and spin triplet equal spin pairing (ESP) while including Fermi wave mismatch (FWM) and effective mass mismatch (EMM) in two sides of the nano-junction. We find that the conductance shows clearly different behaviors all depending on the symmetries of cooper pairing in a manner that the conductance spectra shows a gap-like structure, two interior dips structure and zero bias peak for SWP, OSP, and ESP, respectively. Also, the effective FS gap (Δeff) is a linear and decreasing function of exchange field. The slope of (Δeff) versus exchange field for OSP is twice the SWP. Thus, we can determine the spin polarization of N/FS nano-junction based on the dependence of (Δeff) to exchange field.
文摘micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.
基金supported by the National Natural Science Foundation of China(Grant No.91748206)Funding of Higher Education AgencyFrontier Funding of Chinese Academy of Sciences
文摘Conventional rigid electronics are usually unconformable with soft skins and tend to fail in accurate physiological monitoring and precise treatment. Electronic skins(e-Skins) made by conductive and stretchable materials offer mechanical compliance for fabricating flexible and conformable wearables. Compared to common organic or inorganic conductive materials, gallium-based liquid metals alone own superior conductivity and compliance. Here, we demonstrate a highly conductive and stretchable electronic skin with liquid metal circuits(LMCs) embedded in silicone rubber film, which are functionalized for physiological signals monitoring. Through the designs of serpentine structure, LMCs maintained good electrical conductivity and functionality under over 100% strain. Also, a wearable electrocardiogram(ECG) recording device was fabricated and tested. The device was able to acquire steady signals during real-time measurement of physical activities. The proposed liquid metal e-Skin can be further extended to conformable bio-integrated healthcare devices and intelligent health monitoring networks.
基金supported by the Natural Science Foundation of Gansu Province,China(Grant No.145RJZA226)Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-35)Beijing Municipal Commission of Science and Technology(Grant Nos.Z131100006013005 and Z131100006013004)
文摘For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction,which is named piezotronic effect.Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications,and they are typical nonlinear elements.In this paper,a simplified current-voltage analysis solution of piezotronic transistors is developed,which can be used for circuit design and simulation.Furthermore,the typical nonlinear circuit:Chua's circuit based on piezotronic transistors is simulated.We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain.This study provides insight into the nonlinear properties of the piezotronic transistor,as well as guidance for piezotronic transistor nonlinear circuit application.
文摘We present a first-principles theoretical study of electric field- and straincontrolled intrinsic half-metallic properties of zigzagged aluminium nitride (A1N) nanoribbons. We show that the half-metallic property of AIN ribbons can undergo a transition into fully-metallic or semiconducting behavior with application of an electric field or uniaxial strain. An external transverse electric field induces a full charge screening that renders the material semiconducting. In contrast, as uniaxial strain varies from compressive to tensile, a spin-resolved selective self-doping increases the half-metallic character of the ribbons. The relevant strain-induced changes in electronic properties arise from band structure modifications at the Fermi level as a consequence of a spin-polarized charge transfer between p-orbitals of the N and A1 edge atoms in a spin-resolved self-doping process. This band structure tunability indicates the possibility of designing magnetic nanoribbons with tunable electronic structure by deriving edge states from elements with sufficiently different localization properties. Finite temperature molecular dynamics reveal a thermally stable half-metallic nanoribbon up to room temperature.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234006,61501220,U1432135,11674054,and 11611140101)Jiangsu Provincial Natural Science Fund(Grant No.SBK2015040804)Opening Project of Wuhan National High Magnetic Field Center(Grant No.2015KF19)
文摘We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.