In this paper, we conduct theoretical research on design and implementation on wind and light complementary LED lighting controller based on the novel base board packaging technology. LED, as a kind of device can conv...In this paper, we conduct theoretical research on design and implementation on wind and light complementary LED lighting controller based on the novel base board packaging technology. LED, as a kind of device can convert electric power into visible light directly the homomorphism of semiconductor devices, with high efficiency and small energy consumption, good light quality, use safety, long service life, green environmental protection, flexible control as this is common lamps and lanterns is incomparable advantage. Therefore, it is considered to be 21 century of a new generation of lighting source. Based on the superiority of LED, it is widely applied in many fields of lighting. To enhance the traditional solar based pure LED system, we enhance it with the combination of the wind power and the optimized controller that holds specific meaning.展开更多
A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the puls...A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10kV/m to 370kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.展开更多
文摘In this paper, we conduct theoretical research on design and implementation on wind and light complementary LED lighting controller based on the novel base board packaging technology. LED, as a kind of device can convert electric power into visible light directly the homomorphism of semiconductor devices, with high efficiency and small energy consumption, good light quality, use safety, long service life, green environmental protection, flexible control as this is common lamps and lanterns is incomparable advantage. Therefore, it is considered to be 21 century of a new generation of lighting source. Based on the superiority of LED, it is widely applied in many fields of lighting. To enhance the traditional solar based pure LED system, we enhance it with the combination of the wind power and the optimized controller that holds specific meaning.
文摘A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10kV/m to 370kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.