针对加入导向性局部搜索(Guided Local Search,GLS)的蚁群算法(Ant Colony Optimization,ACO)容易过早收敛的问题,提出一种带有摄动的导向性蚁群算法(Perturbation Guided Ant Colony Optimization,PGACO),该算法在当前解表现出过早收...针对加入导向性局部搜索(Guided Local Search,GLS)的蚁群算法(Ant Colony Optimization,ACO)容易过早收敛的问题,提出一种带有摄动的导向性蚁群算法(Perturbation Guided Ant Colony Optimization,PGACO),该算法在当前解表现出过早收敛的趋势时,采用摄动(Perturbation)方式干扰解构建过程,使当前解移动到其邻域空间,从而产生一个新的可行解来避免算法过早收敛,提高算法求解的精度。实验结果表明,PGACO能有效地改善过早收敛问题,获得更优的可行解和执行速度,同时具有更强的全局搜索能力,能进一步提高算法的性能。展开更多
文摘针对加入导向性局部搜索(Guided Local Search,GLS)的蚁群算法(Ant Colony Optimization,ACO)容易过早收敛的问题,提出一种带有摄动的导向性蚁群算法(Perturbation Guided Ant Colony Optimization,PGACO),该算法在当前解表现出过早收敛的趋势时,采用摄动(Perturbation)方式干扰解构建过程,使当前解移动到其邻域空间,从而产生一个新的可行解来避免算法过早收敛,提高算法求解的精度。实验结果表明,PGACO能有效地改善过早收敛问题,获得更优的可行解和执行速度,同时具有更强的全局搜索能力,能进一步提高算法的性能。