The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determine...The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.展开更多
Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbi...Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example.展开更多
Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that ...Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that by means of 3D commercial code (ANSYS/Fluent v. 15), the designed cascades were examined. The characteristic parameters of compared guide vanes have been presented. The problem of low head hydraulic turbine design is important from the technical point of view for usually not typical environmental circumstances, in which the hydropower plants are planned.展开更多
The growing complexity of System on Chip (SOC) requres a system level specicanon and design approach. High-level languages such as C++/SystemC can play multiple roles in system design as target languages. There ar...The growing complexity of System on Chip (SOC) requres a system level specicanon and design approach. High-level languages such as C++/SystemC can play multiple roles in system design as target languages. There are many practical problems in the application of object-oriented methods for this goal. Based on the analysis of traditional and system-level design methodology, a new object-oriented SOC design methodology with object-oriented design patterns is proposed, which emphasizes high-level design and verification. Aiming at the final goal of developing design patterns specific to SOC design, the reuse of design patterns in SOC systems and the capability of new SOC design patterns are discussed. With the illustration of some concrete examples of SOC design patterns, the application of object-oriented design methodology in the SOC design process is presented.展开更多
A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency ide...A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency identification(RFID) inlay. The optimization condition for flip-chip bonding was determined from the behavior of bonding strength. Under the optimized condition, the shear strength for the antenna printed with paste-type Ag ink was larger than that for Cu antenna. Furthermore, an identification distance was varied from the antenna materials. Comparing with the Ag antenna pattern, the as-bonded die on Cu antenna showed a larger distance of identification. However, the long-term reliability of inlay using the Cu antenna was decreased significantly as a function of aging time at room temperature because of the bended shape of Cu antenna formed during the flip-chip bonding process.展开更多
In this paper an optimization method of the runner blades in a bulb turbine based on CFD analysis is proposed.In the method the main scales of the turbine including guide vane,runner and draft are maintained.Only the ...In this paper an optimization method of the runner blades in a bulb turbine based on CFD analysis is proposed.In the method the main scales of the turbine including guide vane,runner and draft are maintained.Only the runner blades are modified based on the present method.In the optimization method the runner blade is expressed by spline surface with a gather of coordinate points.The B-spline curve is used to keep the modified blades smooth.In order to make the blade optimization simple and ef- ficient,one of the coordinates is fixed and only the angles of the points are changed according to different modification purposes.Three main optimization principles based on flow diagnosis are presented here.These three principles are all based on the CFD analysis of the internal flow in bulb turbine.For the purpose of method verification,the optimization method is used in a model bulb turbine.A three dimensional steady turbulent computation is carried out through the whole passage including the bulb body,guide vanes,runner and draft tube of the bulb turbine under seven different work conditions.An SST k-ωturbulence model is used during the CFD analysis and the performance of the turbine can be achieved.The runner blade is optimized according to the three optimization principles based on flow diagnosis.The CFD analysis is conducted again on the optimized turbine and another modification is needed if the new turbine can’t satisfy the required performance.Comparison of the computational results between the original turbine and an optimized one indicates that the optimization method is practical and does improve the performance of the bulb turbine.展开更多
The experimental result of the collection efficiency of the axial flow cyclone with the fixed guide vanes is lower than that with the tangential inlet pipe to the cyclone body due to the weak angular momentum transfer...The experimental result of the collection efficiency of the axial flow cyclone with the fixed guide vanes is lower than that with the tangential inlet pipe to the cyclone body due to the weak angular momentum transfer given by flowing through the guide vanes. However, one of the interesting points is the control of the collection efficiency depended on the funnel shaped exit pipes. The collection efficiencies for these funnel shaped exit pipes are depended on the Froude number. Then, in this paper, the experimental results of the pressure drop and also the collection efficiency using the fly-ash particles and also the comparison of the calculated results of the collection efficiency with the experimental results are described i~ detail.展开更多
Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of j...Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of jet flow structures with impinging distance is characterized using the technique of particle image velocimetry (PIV). Correspondingly, the distributions of wall pressure and heat transfer on the plate are measured. At sufficiently large impinging distances, without swirling flow, the obtained flow and wall pressure/heat transfer data are consistent with the classical observation for a conventional annular impinging jet, showing the transition from annular impinging jet flow to single circular impinging jet-like flow. In contrast, no such transition occurs in the presence of flow turning by short guide vanes. At short and intermediate impinging distances, flow turning causes more non-uniform distributions of wall pressure and heat transfer on the target plate and the local heat transfer rates higher than those of the conventional annular jet. This is attributed to the vortical flow structures shed and convected downstream from the short guide vanes. In sharp contrast, at large impinging distances, the larger momentum loss due to flow turning results in lower heat transfer rates on the plate.展开更多
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered un- ...The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered un- shrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a f'wst scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the dif- fuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pres- sure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.展开更多
Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,w...Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.展开更多
As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes e...As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes.展开更多
The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the eff...The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.展开更多
Guide vanes are installed in the Wells turbine in order to improve its efficiency, self-rotating characteristics and off design performance with stall. This work attempts to explain the role of these guide vanes on th...Guide vanes are installed in the Wells turbine in order to improve its efficiency, self-rotating characteristics and off design performance with stall. This work attempts to explain the role of these guide vanes on the basis of momentum theory. It is shown that the upstream vanes are more effective in enhancing efficiency than the downstream ones. A design method for guide vanes is suggested based on experimental data and potential theory. Experimental studies carried out by the author confirm the theory proposed.展开更多
基金Supported by the Independent Innovation Foundation for National Defense of Huazhong University of Science and Technology(No.01-18-140019)
文摘The effect of a guide vane installed at the elbow on flow-induced noise and vibration is investigated in the range of Reynolds numbers from 1.70×10^5 to 6.81×10^5, and the position of guide vane is determined by publications. The turbulent flow in the piping elbow is simulated with large eddy simulation (LES). Following this, a hybrid method of combining LES and Lighthill's acoustic analogy theory is used to simulate the hydrodynamic noise and sound sources are solved as volume sources in code Actran. In addition, the flow-induced vibration of the piping elbow is investigated based on a fluid-structure interaction (FSI) code. The LES results indicate that the range of vortex zone in the elbow without the guide vane is larger than the case with the guide vane, and the guide vane is effective in reducing flow-induced noise and vibration in the 90° piping elbow at different Reynolds numbers.
文摘Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example.
文摘Two concepts of the guide vanes channels design for a low head hydraulic turbine were investigated using 2D and 3D models. Model 2D was used to generate the geometry of profiles which form a blade channel. After that by means of 3D commercial code (ANSYS/Fluent v. 15), the designed cascades were examined. The characteristic parameters of compared guide vanes have been presented. The problem of low head hydraulic turbine design is important from the technical point of view for usually not typical environmental circumstances, in which the hydropower plants are planned.
文摘The growing complexity of System on Chip (SOC) requres a system level specicanon and design approach. High-level languages such as C++/SystemC can play multiple roles in system design as target languages. There are many practical problems in the application of object-oriented methods for this goal. Based on the analysis of traditional and system-level design methodology, a new object-oriented SOC design methodology with object-oriented design patterns is proposed, which emphasizes high-level design and verification. Aiming at the final goal of developing design patterns specific to SOC design, the reuse of design patterns in SOC systems and the capability of new SOC design patterns are discussed. With the illustration of some concrete examples of SOC design patterns, the application of object-oriented design methodology in the SOC design process is presented.
基金supported by the Ministry of Commerce, Industry and Energy (MOCIE) of Korea (10031777)
文摘A reliability of flip-chip bonded die as a function of anisotropic conductive paste (ACP) hybrid materials, bonding conditions, and antenna pattern materials was investigated during the assembly of radio frequency identification(RFID) inlay. The optimization condition for flip-chip bonding was determined from the behavior of bonding strength. Under the optimized condition, the shear strength for the antenna printed with paste-type Ag ink was larger than that for Cu antenna. Furthermore, an identification distance was varied from the antenna materials. Comparing with the Ag antenna pattern, the as-bonded die on Cu antenna showed a larger distance of identification. However, the long-term reliability of inlay using the Cu antenna was decreased significantly as a function of aging time at room temperature because of the bended shape of Cu antenna formed during the flip-chip bonding process.
基金supported by the Tianjin Technical Innovative Project,Tianjin Tianfa Heavy Machinery Company Ltd.and Harbin Institute of Large Electric Machinery
文摘In this paper an optimization method of the runner blades in a bulb turbine based on CFD analysis is proposed.In the method the main scales of the turbine including guide vane,runner and draft are maintained.Only the runner blades are modified based on the present method.In the optimization method the runner blade is expressed by spline surface with a gather of coordinate points.The B-spline curve is used to keep the modified blades smooth.In order to make the blade optimization simple and ef- ficient,one of the coordinates is fixed and only the angles of the points are changed according to different modification purposes.Three main optimization principles based on flow diagnosis are presented here.These three principles are all based on the CFD analysis of the internal flow in bulb turbine.For the purpose of method verification,the optimization method is used in a model bulb turbine.A three dimensional steady turbulent computation is carried out through the whole passage including the bulb body,guide vanes,runner and draft tube of the bulb turbine under seven different work conditions.An SST k-ωturbulence model is used during the CFD analysis and the performance of the turbine can be achieved.The runner blade is optimized according to the three optimization principles based on flow diagnosis.The CFD analysis is conducted again on the optimized turbine and another modification is needed if the new turbine can’t satisfy the required performance.Comparison of the computational results between the original turbine and an optimized one indicates that the optimization method is practical and does improve the performance of the bulb turbine.
文摘The experimental result of the collection efficiency of the axial flow cyclone with the fixed guide vanes is lower than that with the tangential inlet pipe to the cyclone body due to the weak angular momentum transfer given by flowing through the guide vanes. However, one of the interesting points is the control of the collection efficiency depended on the funnel shaped exit pipes. The collection efficiencies for these funnel shaped exit pipes are depended on the Froude number. Then, in this paper, the experimental results of the pressure drop and also the collection efficiency using the fly-ash particles and also the comparison of the calculated results of the collection efficiency with the experimental results are described i~ detail.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB610305)the National "111" Project of China (Grant No. B06024)the National Natural Science Foundation of China (Grant Nos. 10825210, 11072188)
文摘Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of jet flow structures with impinging distance is characterized using the technique of particle image velocimetry (PIV). Correspondingly, the distributions of wall pressure and heat transfer on the plate are measured. At sufficiently large impinging distances, without swirling flow, the obtained flow and wall pressure/heat transfer data are consistent with the classical observation for a conventional annular impinging jet, showing the transition from annular impinging jet flow to single circular impinging jet-like flow. In contrast, no such transition occurs in the presence of flow turning by short guide vanes. At short and intermediate impinging distances, flow turning causes more non-uniform distributions of wall pressure and heat transfer on the target plate and the local heat transfer rates higher than those of the conventional annular jet. This is attributed to the vortical flow structures shed and convected downstream from the short guide vanes. In sharp contrast, at large impinging distances, the larger momentum loss due to flow turning results in lower heat transfer rates on the plate.
基金funding from the European Union Seventh Framework Program(FP7)through the ENOVAL project under grant agreement n°604999
文摘The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered un- shrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a f'wst scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the dif- fuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pres- sure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
基金funded by the National Natural Science Foundation of China(No.51176013)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111101130002),China
文摘Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
基金supported by the National Key Technology R&G Program(Project No.2012BAF03B01-X)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)
文摘As the pump turbine tends to be operated with high head and high rotational speed, the study of stability problems becomes more important. The pump turbine usually works at operating conditions where the guide vanes experience strong vibrations. However, most traditional studies were carried out based on constant GVO(guide vane opening) simulations. In this work, dynamic analysis on pressure fluctuation in the vaneless region of a pump turbine model was conducted using a dynamic mesh method in turbine mode. 3D unsteady simulations were conducted where GVO was closed and opened by 1° from the initial 18°. Detailed time domain and frequency domain characteristics on pressure fluctuation in the vaneless region under different guide vane rotational states compared with constant GVO simulations were investigated. Results show that, during the guide vanes oscillating process, the low and intermediate frequency components in the vaneless region are significantly different. The amplitudes of pressure fluctuation are higher than those with constant GVO simulations, which agree better with the experimental data. In addition, the pressure fluctuation increases when GVO is opened, and vice versa. It can be concluded that pressure fluctuation in the vaneless region is strongly influenced by the oscillating of the guide vanes.
基金supported by National Basic Research Program of China 2007CB210104National Natural Science Foundation of China with projects No.51010007.and No.50736007
文摘The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.
文摘Guide vanes are installed in the Wells turbine in order to improve its efficiency, self-rotating characteristics and off design performance with stall. This work attempts to explain the role of these guide vanes on the basis of momentum theory. It is shown that the upstream vanes are more effective in enhancing efficiency than the downstream ones. A design method for guide vanes is suggested based on experimental data and potential theory. Experimental studies carried out by the author confirm the theory proposed.