Based on modified silicon polyester resin in addition to several functional fillers such as corrosion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be ...Based on modified silicon polyester resin in addition to several functional fillers such as corrosion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be made. On the basis of boronnitride(BN) and aluminum nitride(AIN) used as thermal conductive fillers and by means of the testing system of hot disk and heat transfer experiment, researches on the varieties of thermal conductive fillers and the effects of the contents of high-thermal conductive coating have been done, which shows that the thermal conductivity of coating increases with the increase of the quality fraction and the coefficient of thermal conductivity of the thermal conductive fillers of coating. With guaranteeing better heat resistance, stronger corrosion resistance and adhesive force, the coefficient of coating can reach a level as high as 3 W·m-1·K-1.展开更多
The electroluminescunce (EL) transient characteristics of erbium-doped zinc sulfide thin film (TF) devices excited by short rectangular pulses are studied, the luminescence delay after de-exciting and the relaxation l...The electroluminescunce (EL) transient characteristics of erbium-doped zinc sulfide thin film (TF) devices excited by short rectangular pulses are studied, the luminescence delay after de-exciting and the relaxation luminance peaks during decay are observed. A model description for energy transfer has been proposed. The experimental results can be theoretically explained with the computer curve fittings.展开更多
The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 c...The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 cryostat and LD200205 test system. In combination with the simulation results of the reflective spectrum and the gain peak at different temperatures, the measurement results have been analyzed. In addition, the dependence of device size on temperature characteristics is discussed. The experimental data can be used to optimally design of VCSEL at high or cryogenic temperature.展开更多
Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling proper...Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.展开更多
To date, the cost-effective utilization of solar energy by photovoltaics for large-scale deployment remains challenging. Further cost minimization and efficiency maximization, through reduction of material consumption...To date, the cost-effective utilization of solar energy by photovoltaics for large-scale deployment remains challenging. Further cost minimization and efficiency maximization, through reduction of material consumption, simplification of device fabrication as well as optimization of device structure and geometry, are required. The usage of 1D nanomaterials is attractive due to the outstanding light coupling effect, the ease of fabrication, and integration with one-dimensional(1-D) semiconductor materials. The light absorption efficiency can be enhanced significantly, and the corresponding light-toelectricity conversion efficiency can be as high as their bulk counterparts. Also, the amount of active materials used can be reduced. This review summarizes the recent development of 1-D nanomaterials for photovoltaic applications, including the anti-reflection, the light absorption,the minority diffusion, and the semiconductor junction properties. With solid progress and prospect shown in the past 10 years, 1-D semiconductor nanomaterials are attractive and promising for the realization of high-efficiency and low-cost solar cells.展开更多
Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted drama...Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,展开更多
Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheologica...Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheological properties(viscosity and thixotropy)for screen printing.The as-printed coatings based on the above ink are uniform and dense on a polyimide substrate,and exhibit a sandwich-type conductive three dimensional network at the microscale.The resistivity of the typical composite coating is as low as 0.23±0.01Ωcm(92±4Ωsq^-1,25μm),which is 30%as that of a pure CB coating(0.77±0.01Ωcm).It is noteworthy that the resistivity decreases to 0.18±0.01Ωcm(72±4Ωsq^-1,25μm)after a further rolling compression.The coating exhibits good mechanical flexibility,and the resistance slightly increases by 12%after 3000 bending cycles.With the CB/GSs composite coatings as a flexible conductor,fascinating luminescent bookmarks and membrane switches were fabricated,demonstrating the tremendous potential of these coatings in the commercial production of flexible electronics and devices.展开更多
Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination,sterilization,water purification and treatment.A common component of evaporator design i...Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination,sterilization,water purification and treatment.A common component of evaporator design is a thermal-insulation support placed between the photothermal evaporation surface and bulk water.This configuration,common in 2-dimensional(2 D)evaporation systems,minimizes heat loss from evaporation surface to bulk water,thus localizing the heat on the evaporation surface for efficient evaporation.This design is subsequently directly adopted for 3-dimensional(3 D)evaporators without any consideration if it is appropriate.However,unlike 2 D solar evaporators,the 3 D evaporators can also harvest additional energy(other than solar light)from the air and bulk water to enhance evaporation rate.In this scenario,the use of thermal insulator support is not proper since it will hinder energy extraction from water.Here,the traditional 3 D evaporator configuration was completely redesigned by using a highly thermally conductive material,instead of a thermal insulator,to connect evaporation surfaces and the bulk water.Much higher evaporation rates were achieved by this strategy,owing to the rapid heat transfer from the bulk water to the evaporation surfaces.Indoor and outdoor tests both confirmed that evaporation performance could be significantly improved by substituting a thermal insulator with thermally conductive support.These findings will redirect the future design of 3 D photothermal evaporators.展开更多
Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile...Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing -82 wt.% Ni(OH)2 exhibited a specific capacitance of -1,247 F/g at a scan rate of 5 mV/s and -785 F/g at 40 mV/s (-63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (-309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene-carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (-1,352 F/g at 5 mV/s) and rate capability (-66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (-43 and -47 Wh/kg, respectively) and power densities (-8 and -9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.展开更多
Organic field-effect transistors(OFETs) offer great potential applications in chemical and biological sensing for homeland security,environmental monitoring,industry manufacturing,and medical/biological detection. M...Organic field-effect transistors(OFETs) offer great potential applications in chemical and biological sensing for homeland security,environmental monitoring,industry manufacturing,and medical/biological detection. Many studies concentrate on sensitivity and selectivity improvement of OFET-based sensors. We report four organic semiconductors with different alkyl side chain lengths but the same π-conjugated core structure for OFETs. Our work focuses on the molecular structure of organic semiconductors(OSCs). Alkyl side chains can hinder the diffusion of ammonia into the OSCs layer,which blocks the interaction between ammonia and conducting channel. The result also reveals the relationship between the alky chain and the film thickness in sensitivity control. These results are expected to be a guide to the molecular design of organic semiconductors and the choice of OSCs.展开更多
The first decade of the 21st century has been labeled as "the sensing decade". The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and el...The first decade of the 21st century has been labeled as "the sensing decade". The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have fo- cused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunc- tionalized nanomaterials can be used as catalysts, electronic conductors, optical emitters, carriers or tracers to obtain the ampli- fied detection signal and the stabilized recognition probes or biosensing interface. The designed signal amplification strategies have greatly promoted the development of stable, specific, selective and sensitive biosensors in different fields. This review in- troduces some novel principles and detection strategies in the area of biosensing, based on functional nanomaterials. The gen- eral methods for biofunctionalization of nanomaterials with biomolecules and their biosensing application in immunoassay of protein, DNA detection, carbohydrate analysis and cytosensing are also described.展开更多
Self-assembly of nanocrystals can not only lead to a better understanding of inter-particle acting force, but also enable rational building of complex and functional materials for future nanodevices. Here by utilizing...Self-assembly of nanocrystals can not only lead to a better understanding of inter-particle acting force, but also enable rational building of complex and functional materials for future nanodevices. Here by utilizing polyvinylpyrrolidone (PVP) as the as capping and structure directing agents, hierarchical Mn304 architectures involving coil-like nanorings, hexagonal nanoframes, and nanodisks are conveniently synthesized by a one-pot solution method. The sophisticated assemblies are proven to be me- diated by the PVP soft templates formed at varied concentrations. The driving forces of self-assembled complex nanostructures and the unique role of PVP concentration are discussed. Magnetic properties of the as assembled Mn3O4 rings are also studied by a SQUID system, which shows the typical side effect of Curie temperature.展开更多
基金Supported by the State Key Development of Basic Research of China(2001CB710703)the National Natural Science Foundation of China(51176053)+2 种基金the Key Technologies R&D Program of Guangdong Province(2011B090400562)the Strategic Emerging Industry Special Funds of Guangdong Province(2012A080304015)the Key Technologies R&D Program of Guangzhou City(2010U1-D00221,2011Y5000006)
文摘Based on modified silicon polyester resin in addition to several functional fillers such as corrosion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be made. On the basis of boronnitride(BN) and aluminum nitride(AIN) used as thermal conductive fillers and by means of the testing system of hot disk and heat transfer experiment, researches on the varieties of thermal conductive fillers and the effects of the contents of high-thermal conductive coating have been done, which shows that the thermal conductivity of coating increases with the increase of the quality fraction and the coefficient of thermal conductivity of the thermal conductive fillers of coating. With guaranteeing better heat resistance, stronger corrosion resistance and adhesive force, the coefficient of coating can reach a level as high as 3 W·m-1·K-1.
文摘The electroluminescunce (EL) transient characteristics of erbium-doped zinc sulfide thin film (TF) devices excited by short rectangular pulses are studied, the luminescence delay after de-exciting and the relaxation luminance peaks during decay are observed. A model description for energy transfer has been proposed. The experimental results can be theoretically explained with the computer curve fittings.
文摘The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 cryostat and LD200205 test system. In combination with the simulation results of the reflective spectrum and the gain peak at different temperatures, the measurement results have been analyzed. In addition, the dependence of device size on temperature characteristics is discussed. The experimental data can be used to optimally design of VCSEL at high or cryogenic temperature.
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.
文摘Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.
基金supported by the Early Career Scheme of the Research Grants Council of Hong Kong SARChina(City U 139413)+4 种基金the National Natural Science Foundation of China(51202205 and 61504151)the State Key Laboratory of Multiphase Complex Systems(MPCS-2014-C-01 and MPCS-2015-A-04)the Science Technology and Innovation Committee of Shenzhen Municipality(JCYJ20140419115507588)a Grant from the Shenzhen Research InstituteCity University of Hong Kong
文摘To date, the cost-effective utilization of solar energy by photovoltaics for large-scale deployment remains challenging. Further cost minimization and efficiency maximization, through reduction of material consumption, simplification of device fabrication as well as optimization of device structure and geometry, are required. The usage of 1D nanomaterials is attractive due to the outstanding light coupling effect, the ease of fabrication, and integration with one-dimensional(1-D) semiconductor materials. The light absorption efficiency can be enhanced significantly, and the corresponding light-toelectricity conversion efficiency can be as high as their bulk counterparts. Also, the amount of active materials used can be reduced. This review summarizes the recent development of 1-D nanomaterials for photovoltaic applications, including the anti-reflection, the light absorption,the minority diffusion, and the semiconductor junction properties. With solid progress and prospect shown in the past 10 years, 1-D semiconductor nanomaterials are attractive and promising for the realization of high-efficiency and low-cost solar cells.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB632900)National Natural Science Foundation of China(Grant Nos.61390502&21373068)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51521003)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS201607B)
文摘Since silicon is limited by its physical properties,it is challenging and important to find candidate materials for high performance electronic devices.Two-dimensional(2D)semiconductor materials have attracted dramatically increasing interest due to their unique physical,
基金supported by the Scientific and Technological Key Project of Shanxi Province (MC2016-04 and MC2016-08)Natural Science Foundation of Shanxi Province (201801D221156)+2 种基金DNL Cooperation Fund of CAS (DNL180308)Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-068)Youth Innovation Promotion Association of CAS
文摘Stable aqueous carbon inks,with graphene sheets(GSs)and carbon black(CB)as conductive fillers,are prepared by a simple one-pot ball-milling method.The asprepared composite ink with 10 wt%GSs shows optimized rheological properties(viscosity and thixotropy)for screen printing.The as-printed coatings based on the above ink are uniform and dense on a polyimide substrate,and exhibit a sandwich-type conductive three dimensional network at the microscale.The resistivity of the typical composite coating is as low as 0.23±0.01Ωcm(92±4Ωsq^-1,25μm),which is 30%as that of a pure CB coating(0.77±0.01Ωcm).It is noteworthy that the resistivity decreases to 0.18±0.01Ωcm(72±4Ωsq^-1,25μm)after a further rolling compression.The coating exhibits good mechanical flexibility,and the resistance slightly increases by 12%after 3000 bending cycles.With the CB/GSs composite coatings as a flexible conductor,fascinating luminescent bookmarks and membrane switches were fabricated,demonstrating the tremendous potential of these coatings in the commercial production of flexible electronics and devices.
基金financial support from the Australian Research Council(ARC Future Fellowship FT190100485)financial support from the China Scholarship Council for his PhD Scholarshipthe Future Industries Institute for a top up scholarship。
文摘Interfacial solar steam generation is an efficient water evaporation technology which has promising applications in desalination,sterilization,water purification and treatment.A common component of evaporator design is a thermal-insulation support placed between the photothermal evaporation surface and bulk water.This configuration,common in 2-dimensional(2 D)evaporation systems,minimizes heat loss from evaporation surface to bulk water,thus localizing the heat on the evaporation surface for efficient evaporation.This design is subsequently directly adopted for 3-dimensional(3 D)evaporators without any consideration if it is appropriate.However,unlike 2 D solar evaporators,the 3 D evaporators can also harvest additional energy(other than solar light)from the air and bulk water to enhance evaporation rate.In this scenario,the use of thermal insulator support is not proper since it will hinder energy extraction from water.Here,the traditional 3 D evaporator configuration was completely redesigned by using a highly thermally conductive material,instead of a thermal insulator,to connect evaporation surfaces and the bulk water.Much higher evaporation rates were achieved by this strategy,owing to the rapid heat transfer from the bulk water to the evaporation surfaces.Indoor and outdoor tests both confirmed that evaporation performance could be significantly improved by substituting a thermal insulator with thermally conductive support.These findings will redirect the future design of 3 D photothermal evaporators.
文摘Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing -82 wt.% Ni(OH)2 exhibited a specific capacitance of -1,247 F/g at a scan rate of 5 mV/s and -785 F/g at 40 mV/s (-63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (-309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene-carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (-1,352 F/g at 5 mV/s) and rate capability (-66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (-43 and -47 Wh/kg, respectively) and power densities (-8 and -9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.
基金financially supported by the National Natural Science Foundation of China(21302142 and 51603151)the National Key Research and Development Program of China(2017YFA0103900 and 2017YFA0103904)+1 种基金the 1000 Youth Talent Planthe Fundamental Research Funds for the Central Universities of China
文摘Organic field-effect transistors(OFETs) offer great potential applications in chemical and biological sensing for homeland security,environmental monitoring,industry manufacturing,and medical/biological detection. Many studies concentrate on sensitivity and selectivity improvement of OFET-based sensors. We report four organic semiconductors with different alkyl side chain lengths but the same π-conjugated core structure for OFETs. Our work focuses on the molecular structure of organic semiconductors(OSCs). Alkyl side chains can hinder the diffusion of ammonia into the OSCs layer,which blocks the interaction between ammonia and conducting channel. The result also reveals the relationship between the alky chain and the film thickness in sensitivity control. These results are expected to be a guide to the molecular design of organic semiconductors and the choice of OSCs.
基金the National Basic Research Program of China (2010CB732400)the National Natural Science Foundation of China (20821063 & 20875044)the Natural Science Foundation of Jiangsu (BK2008014)
文摘The first decade of the 21st century has been labeled as "the sensing decade". The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have fo- cused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunc- tionalized nanomaterials can be used as catalysts, electronic conductors, optical emitters, carriers or tracers to obtain the ampli- fied detection signal and the stabilized recognition probes or biosensing interface. The designed signal amplification strategies have greatly promoted the development of stable, specific, selective and sensitive biosensors in different fields. This review in- troduces some novel principles and detection strategies in the area of biosensing, based on functional nanomaterials. The gen- eral methods for biofunctionalization of nanomaterials with biomolecules and their biosensing application in immunoassay of protein, DNA detection, carbohydrate analysis and cytosensing are also described.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20973019,50725208 and 50902007)the Fundamental Research Funds for the Central Universities (Grant No. YMF1002016)
文摘Self-assembly of nanocrystals can not only lead to a better understanding of inter-particle acting force, but also enable rational building of complex and functional materials for future nanodevices. Here by utilizing polyvinylpyrrolidone (PVP) as the as capping and structure directing agents, hierarchical Mn304 architectures involving coil-like nanorings, hexagonal nanoframes, and nanodisks are conveniently synthesized by a one-pot solution method. The sophisticated assemblies are proven to be me- diated by the PVP soft templates formed at varied concentrations. The driving forces of self-assembled complex nanostructures and the unique role of PVP concentration are discussed. Magnetic properties of the as assembled Mn3O4 rings are also studied by a SQUID system, which shows the typical side effect of Curie temperature.