期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
牵引电机鼠笼式转子导条二次钎焊后性能变化浅析 被引量:1
1
作者 牟彦强 苏晓奇 +1 位作者 谢贵生 卫文改 《热加工工艺》 北大核心 2019年第19期164-166,共3页
某型牵引电机在线运行过程中发现其鼠笼式转子导条与端环钎焊部位,导条热影响区出现裂纹,甚至断裂。针对此种现象,制定修复方案,重点分析转子更换导条后二次钎焊及钎焊修复后清洗方式对转子导条性能的影响,以保证牵引电机运行安全。
关键词 牵引电机 二次钎焊 清洗方式 导条性能
下载PDF
Fractional Sobolev-Poincar Inequalities in Irregular Domains 被引量:1
2
作者 Chang-Yu GUO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2017年第3期839-856,共18页
This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in... This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional(q, p)-Sobolev-Poincar′e inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P.,Sobolev-Poincar′e implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out. 展开更多
关键词 Fractional Sobolev-Poincar inequality s-John domain Quasihyperbolic boundary condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部