Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and ...Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.展开更多
Incorporating aluminum particles into viscous medium was proposed to improve the thermal conductivity of the viscous medium and the efficiency of warm viscous pressure forming(WVPF)process.The influence of aluminum pa...Incorporating aluminum particles into viscous medium was proposed to improve the thermal conductivity of the viscous medium and the efficiency of warm viscous pressure forming(WVPF)process.The influence of aluminum particles on a viscous medium was investigated through settling,thermal conductivity,and compression experiments.Warm viscous pressure bulging(WVPB)experiments were conducted on polyetherimide(PEI)and AZ31B magnesium alloy sheets to determine the influence of the aluminum particles size and fraction on the forming efficiency and formed specimens based on the heating preparation times and profile curves,wall thicknesses and surface roughness values of the bulging specimens.The results show that the thermal conductivity of the viscous medium and the WVPF efficiency can be greatly improved via the addition aluminum particles with appropriate size and fraction under certain temperature condition,but have less influence on other properties of viscous medium.展开更多
Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can affect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was...Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can affect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.展开更多
Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters s...Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters such as the radiation emissivity, temperature, contact area and particle size of the packed bed on the conductivity have been estimated. For example, heat transfer by radiation does not dominate if the material has voids of less than l mm in size. Moreover, the effects of contact area and pressure on effective thermal conductivity are negligible for thermal radiation. By considering the microscopic behavior of a packed bed, the homogenization method is thus a powerful tool for estimating the bed's effective thermal conductivity.展开更多
文摘Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.
基金Project(51575364)supported by the National Natural Science Foundation of ChinaProject(2014ZE54024)supported by the Aviation Science Foundation of ChinaProject(LJQ2015083)supported by the Liaoning Excellent Talents in University,China
文摘Incorporating aluminum particles into viscous medium was proposed to improve the thermal conductivity of the viscous medium and the efficiency of warm viscous pressure forming(WVPF)process.The influence of aluminum particles on a viscous medium was investigated through settling,thermal conductivity,and compression experiments.Warm viscous pressure bulging(WVPB)experiments were conducted on polyetherimide(PEI)and AZ31B magnesium alloy sheets to determine the influence of the aluminum particles size and fraction on the forming efficiency and formed specimens based on the heating preparation times and profile curves,wall thicknesses and surface roughness values of the bulging specimens.The results show that the thermal conductivity of the viscous medium and the WVPF efficiency can be greatly improved via the addition aluminum particles with appropriate size and fraction under certain temperature condition,but have less influence on other properties of viscous medium.
基金Supported by the Chinese Academy of Science Visiting Professorship for Senior International Scientists project(2009Z2-1973)
文摘Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can affect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.
文摘Effective thermal conductivity with convection and radiation is analyzed by the homogenization method. This method can precisely represent the microstructure of a packed bed. In this study, the effects of parameters such as the radiation emissivity, temperature, contact area and particle size of the packed bed on the conductivity have been estimated. For example, heat transfer by radiation does not dominate if the material has voids of less than l mm in size. Moreover, the effects of contact area and pressure on effective thermal conductivity are negligible for thermal radiation. By considering the microscopic behavior of a packed bed, the homogenization method is thus a powerful tool for estimating the bed's effective thermal conductivity.