The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray...The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray diffraction (XRD), respectively. The AEC is proportional to the specific conductivity (σ0) and the exponential of (1?ε) (ε is porosity) by a quasi-uniform formula based on the percolation theory. Theσ0 can reflect the intrinsic conductivity of the carbon cathodes free of pores, and it depends on the mean crystallite size parallel to the layer (002). The exponentn is dependent on the materials nature of the cathode aggregates, while an averaged value, 4.65, can practically work well with 5 types of cathode materials. The calculation ofσ0 can be extended to the graphitic cathodes containing different aggregates using the simple rule of mixture.展开更多
The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and be...The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.展开更多
基金Project(20110006110003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(51434005)supported by the National Natural Science Foundation of China
文摘The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray diffraction (XRD), respectively. The AEC is proportional to the specific conductivity (σ0) and the exponential of (1?ε) (ε is porosity) by a quasi-uniform formula based on the percolation theory. Theσ0 can reflect the intrinsic conductivity of the carbon cathodes free of pores, and it depends on the mean crystallite size parallel to the layer (002). The exponentn is dependent on the materials nature of the cathode aggregates, while an averaged value, 4.65, can practically work well with 5 types of cathode materials. The calculation ofσ0 can be extended to the graphitic cathodes containing different aggregates using the simple rule of mixture.
基金the University of Regina for providing laboratory space and the Natural Science and Engineering Research Council of Canada for financial assistance
文摘The main objective of this study was to determine the consolidation behaviour of clay slurries.A finegrained clay with high consistency limits(W_L = 180%,w_P= 120%) was investigated using conventional oedometer and bench-top centrifuge tests.Results indicated that the slurry had an apparent preconsolidation(due to initial conditions,electrochemical interactions,tortuous drainage,and thixotropic strength) from e = 5.7 to e = 5.5 followed by virgin compression.Likewise,the low hydraulic conductivity(10^(-10)-10^(-12) m/s) was due to low porosity(small pore throats) and high tortuosity(long flow paths).Unlike consolidation of soils,the c_v and m_v decreased with increasing σ' but increased with increasing e and k.The data from the two tests correlated well in the range of σ' = 10-65 kPa,e = 5.5-3.86,k= 1.7 × 10^(-10)-5×10^(-11) m/s,F_c = 1-40 MN.New equations were developed to correlate the consolidation parameters(e,σ',k) with F_c.The deviation of k beyond 40 MN(e = 4.65) was due to deviation from the initial straight line portion of the settlement curve in the centrifuge test.