Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro...Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.展开更多
Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high st...A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high stretchable and super-sensitive strain sensors, the ternary composite fiber materials’ interaction, percolation behaviors and mechanism were systematically explored. The resultant SCGFs-based strain sensors simultaneously exhibited high sensitivity, superior stretchability(with a gauge factor of 5,467 under 600% deformation) and excellent durability under different test conditions due to excellent flexibility of SBS, the synergistic effect of hybrid conductive nanofibers and the strong π-π interaction. Besides, the conductive networks in SBS matrix were greatly affected by the mass ratio of CNTs and FLG, and thus the piezoresistive performances of the strain sensors could be controlled by changing the content of hybrid conductive fillers. Especially, the SCGFs with 0.30 wt.%CNTs(equal to their percolation threshold 0.30 wt.%) and 2.7 wt.% FLG demonstrated the highest sensitivity owing to the bridge effect of FLG between adjacent CNTs. Whereas, the SCGFs with 1.0 wt.% CNTs(higher than their percolation threshold) and 2.0 wt.% FLG showed the maximum strain detection range(600%) due to the welding connection caused by FLG between the contiguous CNTs. To evaluate the fabricated sensors, the tensile and the cyclic mechanical recovery properties of SCGFs were tested and analyzed. Additionally, a theoretical piezoresistive mechanism of the ternary composite fiber was investigated by the evolution of conductive networks according to tunneling theory.展开更多
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14C160003, LQ16C160002)the National Natural Science Foundation of China (Grant No.31100442)+2 种基金the Public Projects of Zhejiang Province (Grant No. 2017C31059)Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Open Foundation of the Most Important Subjects (Grant No. 2016KF01)521 Talent Cultivation Program of Zhejiang Sci-Tech University (Grant No. 11110132521310)
文摘Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.
基金supported by the Fundamental Research Funds for the Central Universities (2232018D3-03 and 2232018A3-01)the Program for Changjiang Scholars and Innovative Research Team in University (IRT16R13)+2 种基金the National Natural Science Foundation of China (51603033)the Science and Technology Commission of Shanghai Municipality (16JC1400700)the Innovation Program of Shanghai Municipal Education Commission (2017-01-0700-03-E00055)
文摘A series of 1-D polymer ternary composites based on poly(styrene-butadiene-styrene)(SBS)/carbon nanotubes(CNTs)/few-layer graphene(FLG) conductive fibers(SCGFs)were prepared via wet-spinning. Employed as ultra-high stretchable and super-sensitive strain sensors, the ternary composite fiber materials’ interaction, percolation behaviors and mechanism were systematically explored. The resultant SCGFs-based strain sensors simultaneously exhibited high sensitivity, superior stretchability(with a gauge factor of 5,467 under 600% deformation) and excellent durability under different test conditions due to excellent flexibility of SBS, the synergistic effect of hybrid conductive nanofibers and the strong π-π interaction. Besides, the conductive networks in SBS matrix were greatly affected by the mass ratio of CNTs and FLG, and thus the piezoresistive performances of the strain sensors could be controlled by changing the content of hybrid conductive fillers. Especially, the SCGFs with 0.30 wt.%CNTs(equal to their percolation threshold 0.30 wt.%) and 2.7 wt.% FLG demonstrated the highest sensitivity owing to the bridge effect of FLG between adjacent CNTs. Whereas, the SCGFs with 1.0 wt.% CNTs(higher than their percolation threshold) and 2.0 wt.% FLG showed the maximum strain detection range(600%) due to the welding connection caused by FLG between the contiguous CNTs. To evaluate the fabricated sensors, the tensile and the cyclic mechanical recovery properties of SCGFs were tested and analyzed. Additionally, a theoretical piezoresistive mechanism of the ternary composite fiber was investigated by the evolution of conductive networks according to tunneling theory.