A stochastic model of conducting crack propagation is presented to provide a conceptual framework dedicated to the study of the formation of fractal structure of dielectric ageing patterns as a result of a competition...A stochastic model of conducting crack propagation is presented to provide a conceptual framework dedicated to the study of the formation of fractal structure of dielectric ageing patterns as a result of a competition between random fluctuation growth and applied electric strength enhanced deterministic growth. The necessary and sufficient conditions resulting in fractal behaviour in dielectric ageing are found.展开更多
The electrical conductivity (EC) of 1:5 soil-water extract (EC1:5) was studied utilizing path coefficient analysis. The study focused on revealing the main chemical factors contributing to EC of soil extracts an...The electrical conductivity (EC) of 1:5 soil-water extract (EC1:5) was studied utilizing path coefficient analysis. The study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. Results showed that the most important factors influencing the EC1:5 of coastal salt-affected soils were the concentration of salt in 1:5 soil-water extract (So), Cl^-, and the sodium adsorption ratio (SAR), while effects of pH, CO3^2-, HCO3^, soluble sodium percentage (SSP), and sodium dianion ratio (SDR) were very weak. Though the direct path coefficients between EC1:5 and SO4^2- , Ca^2+, Mg^2+, K^+, or Na^+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors (So, Cl^-, and SAR) had sound reliability and very good accuracy.展开更多
The general analysis of the forward AC behavior of a semiconductor diode under series mode is pre- sented for the first time.A new method without any particular assumption to characterize a diode was developed. This m...The general analysis of the forward AC behavior of a semiconductor diode under series mode is pre- sented for the first time.A new method without any particular assumption to characterize a diode was developed. This method can accurately measure the dependence of series resistance, junction capacitance, junction vol- tage, ideality factor, and interfacial layer impedance on forward biases. The measurements confirm that the ne- gative capacitance (NC) of Schottky diode is an effect of the junction, and the interfacial layer can be consi- dered as a layer structure with nonlinear resistance and capacitance.展开更多
The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 ...The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.展开更多
The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing t...The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing the extraction action for the triggering plasma layer P1 during turn-on process, and satisfying the requirement that triggering electric charge cannot be exhausted and therefore enables RSD to turn on uniformly. The on-state thin emitter RSD was equivalent to an asymmetric pin diode model. The simulation result shows that the forward voltage drop of RSD falls with the decrease of doping dose in p^+-emitter in a certain range, and when the doping concentration is extremely tow, the decrease of the width of p^+-emitter can obtain a tow forward voltage drop. Thin emitter RSD chips were made by sintering AI on n-Si. The test result shows that their turn-on process is uniform and the voltage drop is 7.5 V when the peak conversion current is 5 500 A.展开更多
Dependence of conductance of corrugated graphene quantum dot(CGQD)on geometrical features includinglength,width,connection and edge is investigated by the first principles calculations.The results demonstrate that the...Dependence of conductance of corrugated graphene quantum dot(CGQD)on geometrical features includinglength,width,connection and edge is investigated by the first principles calculations.The results demonstrate that theconductance of CGQD with different geometrical features is different from each other.The positions and amplitudesof discrete levels in densities of states and transmission coefficients are sensitive to geometrical features.The I-Vcharacteristics of graphene are modified by size and edge,it is surprise the current does not change monotonously butoscillatory with length.And they are slight change for different connections.展开更多
Microstructures of a duplex-phase Zr-2.5Nb alloy treated by pulsed laser were characterized by electron backscatter diffraction (EBSD) and electron channeling contrast (ECC) imaging techniques. Major attention has...Microstructures of a duplex-phase Zr-2.5Nb alloy treated by pulsed laser were characterized by electron backscatter diffraction (EBSD) and electron channeling contrast (ECC) imaging techniques. Major attention has been paid to non-equilibrium hybrid microstructure consisting of both prior a and β phases, and a plates transformed from new β phases to probe α→β transformation characteristics in the alloy. The origin of the hybrid microstructure is attributed to the specific thermodynamic conditions induced by the pulsed laser treatment. ECC observation shows that newly formed [3 phases during laser heating prefer to nucleate and grow at the expense of edges of prior α grains rather than their interiors. EBSD analyses further reveal that orientations of the new β phases are not determined by the prior a grains according to the Burgers relationship but maintain those of the prior β phases in an epitaxial growth way.展开更多
We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistan...We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.展开更多
The metal-conducting single-walled carbon nanotubes (m-SWNTs) with small diameters (0.7 nm-1.1 nm) are selectively removed from the single-walled carbon nanotubes (SWNTs) by using HNOJH2SO4 mixed solution. Semic...The metal-conducting single-walled carbon nanotubes (m-SWNTs) with small diameters (0.7 nm-1.1 nm) are selectively removed from the single-walled carbon nanotubes (SWNTs) by using HNOJH2SO4 mixed solution. Semiconducting single- walled carbon nanotubes (s-SWNTs) can be separated efficiently from the SWNTs with high controllability and purity based on this novel method, and the outcome is characterized by Raman spectrum. Moreover, the organic field effect transistors (OFETs) are fabricated based on the poly (3-hexylthiophene-2, 5-diyl) (P3HT), and untreated SWNTs and separated SWNTs (s-SWNTs) are mixed with P3HT, respectively. It could be found that the P3HT/s-SWNT device exhibits a better field effect characteristic compared with the P3HT device. The current on/off ratio is increased by 4 times, the threshold voltage is also increased from -28 V to -22 V, and the mobility is increased from 3 ~ 10.3 cmZNs to 5 x 10.3 cm2/Vs.展开更多
文摘A stochastic model of conducting crack propagation is presented to provide a conceptual framework dedicated to the study of the formation of fractal structure of dielectric ageing patterns as a result of a competition between random fluctuation growth and applied electric strength enhanced deterministic growth. The necessary and sufficient conditions resulting in fractal behaviour in dielectric ageing are found.
基金Project supported by the National Basic Research Program of China (No. 2005CB121108)the National Natural Science Foundation of China (No. 40371058)the National High Technology Research and Development Program of China (863 Program) (No. 2002AA2Z4061).
文摘The electrical conductivity (EC) of 1:5 soil-water extract (EC1:5) was studied utilizing path coefficient analysis. The study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. Results showed that the most important factors influencing the EC1:5 of coastal salt-affected soils were the concentration of salt in 1:5 soil-water extract (So), Cl^-, and the sodium adsorption ratio (SAR), while effects of pH, CO3^2-, HCO3^, soluble sodium percentage (SSP), and sodium dianion ratio (SDR) were very weak. Though the direct path coefficients between EC1:5 and SO4^2- , Ca^2+, Mg^2+, K^+, or Na^+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors (So, Cl^-, and SAR) had sound reliability and very good accuracy.
文摘The general analysis of the forward AC behavior of a semiconductor diode under series mode is pre- sented for the first time.A new method without any particular assumption to characterize a diode was developed. This method can accurately measure the dependence of series resistance, junction capacitance, junction vol- tage, ideality factor, and interfacial layer impedance on forward biases. The measurements confirm that the ne- gative capacitance (NC) of Schottky diode is an effect of the junction, and the interfacial layer can be consi- dered as a layer structure with nonlinear resistance and capacitance.
基金supported by Program for New Century Excellent Talents in University(No.NCET-06-0925)
文摘The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.
基金National Natural Science Foundation of China(No.50277016 and 50577028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050487044)
文摘The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing the extraction action for the triggering plasma layer P1 during turn-on process, and satisfying the requirement that triggering electric charge cannot be exhausted and therefore enables RSD to turn on uniformly. The on-state thin emitter RSD was equivalent to an asymmetric pin diode model. The simulation result shows that the forward voltage drop of RSD falls with the decrease of doping dose in p^+-emitter in a certain range, and when the doping concentration is extremely tow, the decrease of the width of p^+-emitter can obtain a tow forward voltage drop. Thin emitter RSD chips were made by sintering AI on n-Si. The test result shows that their turn-on process is uniform and the voltage drop is 7.5 V when the peak conversion current is 5 500 A.
文摘Dependence of conductance of corrugated graphene quantum dot(CGQD)on geometrical features includinglength,width,connection and edge is investigated by the first principles calculations.The results demonstrate that theconductance of CGQD with different geometrical features is different from each other.The positions and amplitudesof discrete levels in densities of states and transmission coefficients are sensitive to geometrical features.The I-Vcharacteristics of graphene are modified by size and edge,it is surprise the current does not change monotonously butoscillatory with length.And they are slight change for different connections.
基金supported by the National Natural Science Foundation of China(Grant No.51401040)China Postdoctoral Science Foundation(Grant No.2015M572446)+1 种基金Postdoctoral Science Foundation of Chongqing(Grant No.Xm2015003)Scientific and Technological ResearchProgram of Chongqing Municipal Education Commission(Grant No.KJ1500901)
文摘Microstructures of a duplex-phase Zr-2.5Nb alloy treated by pulsed laser were characterized by electron backscatter diffraction (EBSD) and electron channeling contrast (ECC) imaging techniques. Major attention has been paid to non-equilibrium hybrid microstructure consisting of both prior a and β phases, and a plates transformed from new β phases to probe α→β transformation characteristics in the alloy. The origin of the hybrid microstructure is attributed to the specific thermodynamic conditions induced by the pulsed laser treatment. ECC observation shows that newly formed [3 phases during laser heating prefer to nucleate and grow at the expense of edges of prior α grains rather than their interiors. EBSD analyses further reveal that orientations of the new β phases are not determined by the prior a grains according to the Burgers relationship but maintain those of the prior β phases in an epitaxial growth way.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234006,61501220,U1432135,11674054,and 11611140101)Jiangsu Provincial Natural Science Fund(Grant No.SBK2015040804)Opening Project of Wuhan National High Magnetic Field Center(Grant No.2015KF19)
文摘We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.
基金supported by the National Natural Science Foundation of China(Nos.60676051,60876046,60906022)the Natural Science Fund of Tianjin(Nos.07JCYBJC12700 and 10JCYBJC01100)
文摘The metal-conducting single-walled carbon nanotubes (m-SWNTs) with small diameters (0.7 nm-1.1 nm) are selectively removed from the single-walled carbon nanotubes (SWNTs) by using HNOJH2SO4 mixed solution. Semiconducting single- walled carbon nanotubes (s-SWNTs) can be separated efficiently from the SWNTs with high controllability and purity based on this novel method, and the outcome is characterized by Raman spectrum. Moreover, the organic field effect transistors (OFETs) are fabricated based on the poly (3-hexylthiophene-2, 5-diyl) (P3HT), and untreated SWNTs and separated SWNTs (s-SWNTs) are mixed with P3HT, respectively. It could be found that the P3HT/s-SWNT device exhibits a better field effect characteristic compared with the P3HT device. The current on/off ratio is increased by 4 times, the threshold voltage is also increased from -28 V to -22 V, and the mobility is increased from 3 ~ 10.3 cmZNs to 5 x 10.3 cm2/Vs.