用溶液插层法制备了马来酸酐接枝聚乙烯 (MHA g PE) /膨胀石墨 (EG)导电纳米复合材料 ,并用XRD、TEM、SEM和光学显微镜对其结构进行了表征。研究表明 :采用此法制得的MHA g PE ,其室温逾渗阀值 (Φc=0 67% ) ,远低于采用常规熔体混合...用溶液插层法制备了马来酸酐接枝聚乙烯 (MHA g PE) /膨胀石墨 (EG)导电纳米复合材料 ,并用XRD、TEM、SEM和光学显微镜对其结构进行了表征。研究表明 :采用此法制得的MHA g PE ,其室温逾渗阀值 (Φc=0 67% ) ,远低于采用常规熔体混合法制得的MHA g PE /EG复合材料的室温逾渗阀值 (Φc=2 74% )。在该导电纳米复合材料中 ,MHA g PE插入到EG石墨片层之间和石墨薄片孔隙之中 ,形成了纳米和微米尺度的MHA g PE/EG复合网络 ,使分散在MHA g PE基体中的EG粒子具有很大的宽厚比 ;能使EG在用量较低时 ,彼此靠近和接触 ,形成导电通路 ,故材料具有低Φc 和高导电性。展开更多
Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro...Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.展开更多
文摘用溶液插层法制备了马来酸酐接枝聚乙烯 (MHA g PE) /膨胀石墨 (EG)导电纳米复合材料 ,并用XRD、TEM、SEM和光学显微镜对其结构进行了表征。研究表明 :采用此法制得的MHA g PE ,其室温逾渗阀值 (Φc=0 67% ) ,远低于采用常规熔体混合法制得的MHA g PE /EG复合材料的室温逾渗阀值 (Φc=2 74% )。在该导电纳米复合材料中 ,MHA g PE插入到EG石墨片层之间和石墨薄片孔隙之中 ,形成了纳米和微米尺度的MHA g PE/EG复合网络 ,使分散在MHA g PE基体中的EG粒子具有很大的宽厚比 ;能使EG在用量较低时 ,彼此靠近和接触 ,形成导电通路 ,故材料具有低Φc 和高导电性。
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14C160003, LQ16C160002)the National Natural Science Foundation of China (Grant No.31100442)+2 种基金the Public Projects of Zhejiang Province (Grant No. 2017C31059)Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Zhejiang Open Foundation of the Most Important Subjects (Grant No. 2016KF01)521 Talent Cultivation Program of Zhejiang Sci-Tech University (Grant No. 11110132521310)
文摘Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.