Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of -15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nan...By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of -15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1,500 was obtained. The operating voltage is less than 2 V.展开更多
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.
文摘By utilizing poly(3-hexylthiophene) (P3HT) polymer nanowires with diameters of -15 nm as the vertical channel material, a polymer nanowire vertical transistor has been demonstrated for the first time. The P3HT nanowires were characterized by absorption spectroscopy and scanning electron microscopy. A saturated output current was created by increasing the thickness of the polymer layers between the electrodes through several spin-coating cycles of the polymer nanowires prepared in a marginal solvent. The carrier mobility was also increased through utilization of polymer nanowires with strong interchain interactions. By introducing a small hole injection barrier between the emitter and semiconducting polymer, an on/off current ratio of 1,500 was obtained. The operating voltage is less than 2 V.