Highly conductive transparent Al-doped zinc oxide (AZO) films with highly (002)-preferred orientation were successfully deposited on glass substrates at room temperature by RF magnetron sputtering. Optimization of...Highly conductive transparent Al-doped zinc oxide (AZO) films with highly (002)-preferred orientation were successfully deposited on glass substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on sputtering RF power and Ar pressure in the vacuum chamber. AZO films of 180nm with an electrical resistivity as low as 2.68 × 10^-3 Ω· cm and an average optical transmission of 90% in the visible range were obtained at RF power of 250W and Ar pressure of 1.2Pa. The effect of chemisorption of oxygen on the grain boundary would capture electrons from conduction band and lead the formation of potential barriers among the crystallites,which will influence the electric property of the AZO thin films. The films have satisfactory properties of low resistance and high transmittance for application as transparent conductive electrodes in light emitting diodes (LEDs) and solar cells.展开更多
SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with g...SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.展开更多
Here we report a simple and scalable method to fabricate high performance thin-film field-effect transistors(FETs) with high yield based on chemically functionalized single-walled carbon nanotubes(SWNTs) by organic ra...Here we report a simple and scalable method to fabricate high performance thin-film field-effect transistors(FETs) with high yield based on chemically functionalized single-walled carbon nanotubes(SWNTs) by organic radical initiators.The UV-Vis-NIR spectra,Raman spectra and electrical characterization demonstrated that metallic species in CoMoCat 65 and HiPco SWNTs could be effectively eliminated after reaction with some organic radical initiators.The effects of the substrate properties on the electrical properties of FET devices were investigated,and the results showed that the electrical properties of FET devices fabricated on high hydrophobic substrates were better than those on low hydrophobic substrates.Furthermore,it was found that FET devices based on 1,1'-azobis(cyanocyclohexane)(ACN)-modified CoMoCat 65 SWNTs exhibited more excellent electrical performance with effective mobility of ~11.8 cm2/Vs and on/off ratio of ~2×105 as compared with benzoyl peroxide(BPO)-modified CoMoCat 65 SWNTs and lauoryl peroxideand(LPO)-modified HiPco SWNTs,likely due to the introduction of the electron-withdrawing groups(CN group) on the SWNT surface.This method does not require nontrivial reaction conditions or complicated purification after reaction,therefore promising low-cost production of high-performance devices for macroelectronics.展开更多
文摘Highly conductive transparent Al-doped zinc oxide (AZO) films with highly (002)-preferred orientation were successfully deposited on glass substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on sputtering RF power and Ar pressure in the vacuum chamber. AZO films of 180nm with an electrical resistivity as low as 2.68 × 10^-3 Ω· cm and an average optical transmission of 90% in the visible range were obtained at RF power of 250W and Ar pressure of 1.2Pa. The effect of chemisorption of oxygen on the grain boundary would capture electrons from conduction band and lead the formation of potential barriers among the crystallites,which will influence the electric property of the AZO thin films. The films have satisfactory properties of low resistance and high transmittance for application as transparent conductive electrodes in light emitting diodes (LEDs) and solar cells.
基金supported by the Depart ment of Science & Technology of Fujian Province(Nos.2008I0019,2006F5062,2006J0032)the Fuzhou University(Nos.K-081005,XRC-0736)~~
文摘SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(09B084)the Opening Project of Key Laboratory of Photochemical Conversion and Optoelectronic Materials,TIPC, Chinese Academy of Sciences(PCOM201114)
文摘Here we report a simple and scalable method to fabricate high performance thin-film field-effect transistors(FETs) with high yield based on chemically functionalized single-walled carbon nanotubes(SWNTs) by organic radical initiators.The UV-Vis-NIR spectra,Raman spectra and electrical characterization demonstrated that metallic species in CoMoCat 65 and HiPco SWNTs could be effectively eliminated after reaction with some organic radical initiators.The effects of the substrate properties on the electrical properties of FET devices were investigated,and the results showed that the electrical properties of FET devices fabricated on high hydrophobic substrates were better than those on low hydrophobic substrates.Furthermore,it was found that FET devices based on 1,1'-azobis(cyanocyclohexane)(ACN)-modified CoMoCat 65 SWNTs exhibited more excellent electrical performance with effective mobility of ~11.8 cm2/Vs and on/off ratio of ~2×105 as compared with benzoyl peroxide(BPO)-modified CoMoCat 65 SWNTs and lauoryl peroxideand(LPO)-modified HiPco SWNTs,likely due to the introduction of the electron-withdrawing groups(CN group) on the SWNT surface.This method does not require nontrivial reaction conditions or complicated purification after reaction,therefore promising low-cost production of high-performance devices for macroelectronics.