Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential v...Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube.It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section.Thus,the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity.However,the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.展开更多
基金supported by the open fund of State Key Laboratory of Hydroscience and Engineer of Tsinghua University(No.sklhse-2013-E-02)the Special Major Project of Science and Technology of Zhejiang province(No.2013C 01139)
文摘Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube.It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section.Thus,the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity.However,the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.