The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in th...The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.展开更多
The mode frequency and the quality factor of nanowire cavities are calculated for the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In the free-standin...The mode frequency and the quality factor of nanowire cavities are calculated for the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In the free-standing nanowire cavity with the dielectric constant ε=6.0 and the length of 5μm, the quality factors of 130,159,and 151 are obtained for modes with frequency around 798 THz,at the cavity radius of 60 nm, 75 nm, and 90 nm, respectively. The obtained field distribution of the fundamental transverse mode shows that the mode field is confined very well by the nanowire cavity even when the radius of nanowire is much smaller than the mode wavelength.展开更多
In this paper,we proposed a new n-channel MOS single event transient(SET) mitigation technique,which is called the open guard transistor(OGT) technique.This hardening scheme is compared with several classical n-channe...In this paper,we proposed a new n-channel MOS single event transient(SET) mitigation technique,which is called the open guard transistor(OGT) technique.This hardening scheme is compared with several classical n-channel MOS hardening structures through 3-D TCAD simulations.The results show that this scheme presents about 35% improvements over the unhardened scheme for mitigating the SET pulse,and its upgrade,the 2-fringe scheme,takes on even more than 50% improvements over the unhardened one.This makes significant sense for the semi-conductor device reliability.展开更多
Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such ...Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such large resonance frequency cannot be found in other traditional magnetic materials.The configurations of magnetic moments along the nanotube have been simulated.The results show that the top end of nanotube has a"flow-out"pattern of magnetic moments configuration.The bottom end has a"flow-in"pattern of magnetic moments configuration.The magnetic moments within the main body of nanotube are aligned perfectly along the length of nanotube.The magnitude of natural resonance peak is strongly related to the volume fraction of a zone,which has the same orientation of magnetic moments.Large microwave permeability values have been found for single nanotube.The generalized Snoek’s law has been used to validate the micromagnetics simulations in this paper.展开更多
The nanoparticle thermal conductivity and nanoscale thermal contact resistance were investigated by molecular dynamics(MD) simulations to further understand nanoscale porous media thermal conductivity.Macroscale porou...The nanoparticle thermal conductivity and nanoscale thermal contact resistance were investigated by molecular dynamics(MD) simulations to further understand nanoscale porous media thermal conductivity.Macroscale porous media thermal conductivity models were then revised for nanoporous media.The effective thermal conductivities of two packed beds with nanoscale nickel particles and a packed bed with microscale nickel particles were then measured using the Hot Disk.The measured results show that the nano/microscale porous media thermal conductivities were much less than the thermal conductivities of the solid particles.Comparison of the measured and calculated results shows that the revised combined parallel-series model and the revised Hsu-Cheng model can accurately predict the effective thermal conductivities of micro-and nanoparticle packed beds.展开更多
文摘The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.
基金This work was supported by the National Nature Science Foun-dation of China under grant No.60225011 ,Major State Basic Re-search Programunder grant No.G2000036606 ,andthe project of"863" plan under grant 2003AA311070 .
文摘The mode frequency and the quality factor of nanowire cavities are calculated for the intensity spectrum obtained by the finite-difference time-domain (FDTD) technique and the Pade approximation. In the free-standing nanowire cavity with the dielectric constant ε=6.0 and the length of 5μm, the quality factors of 130,159,and 151 are obtained for modes with frequency around 798 THz,at the cavity radius of 60 nm, 75 nm, and 90 nm, respectively. The obtained field distribution of the fundamental transverse mode shows that the mode field is confined very well by the nanowire cavity even when the radius of nanowire is much smaller than the mode wavelength.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60836004 and 61006070)
文摘In this paper,we proposed a new n-channel MOS single event transient(SET) mitigation technique,which is called the open guard transistor(OGT) technique.This hardening scheme is compared with several classical n-channel MOS hardening structures through 3-D TCAD simulations.The results show that this scheme presents about 35% improvements over the unhardened scheme for mitigating the SET pulse,and its upgrade,the 2-fringe scheme,takes on even more than 50% improvements over the unhardened one.This makes significant sense for the semi-conductor device reliability.
基金supported by the National Natural Science Foundation of China(Grant No.61271039)the Scientific Foundation of Young Scientists of Sichuan Province(Grant No.2012JQ0053)the Program for New Century Excellent Talents in Universities(NCET-11-0060)
文摘Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such large resonance frequency cannot be found in other traditional magnetic materials.The configurations of magnetic moments along the nanotube have been simulated.The results show that the top end of nanotube has a"flow-out"pattern of magnetic moments configuration.The bottom end has a"flow-in"pattern of magnetic moments configuration.The magnetic moments within the main body of nanotube are aligned perfectly along the length of nanotube.The magnitude of natural resonance peak is strongly related to the volume fraction of a zone,which has the same orientation of magnetic moments.Large microwave permeability values have been found for single nanotube.The generalized Snoek’s law has been used to validate the micromagnetics simulations in this paper.
基金supported by the key project fund from the National Natural Science Foundation of China (Grant No. 50736003)the National Natural Science Foundation of China (Grant No. 50676047)
文摘The nanoparticle thermal conductivity and nanoscale thermal contact resistance were investigated by molecular dynamics(MD) simulations to further understand nanoscale porous media thermal conductivity.Macroscale porous media thermal conductivity models were then revised for nanoporous media.The effective thermal conductivities of two packed beds with nanoscale nickel particles and a packed bed with microscale nickel particles were then measured using the Hot Disk.The measured results show that the nano/microscale porous media thermal conductivities were much less than the thermal conductivities of the solid particles.Comparison of the measured and calculated results shows that the revised combined parallel-series model and the revised Hsu-Cheng model can accurately predict the effective thermal conductivities of micro-and nanoparticle packed beds.