交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线...交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线路分别与单回?1100 k V直流线路同塔架设为例,分析了交流线路在不同布置方式与相序排列方式下地面混合电场的分布特性与规律,并据此计算了导线对地最小高度和走廊宽度。结果表明,根据混合电场交、直分量的横向衰减特性,从走廊中心向外,地面混合电场可分为交流分量占主导的"交流区",交、直流分量比例相当的"混合过渡区"以及直流分量占主导的"直流区",为保证地面交、直流分量"错峰"布置,两回交流线路应采用垂直或倒三角排布方式,此时导线最小对地高度按照交流线路单独运行时的情况设计即可。当交流为750 kV线路时,走廊宽度主要由交流电场控制;交流为330 kV线路时,走廊宽度则由交直流电场分量共同控制。最终推荐采用垂直排布的相序6和倒三角排布的相序4两种布置方式。展开更多
随着用电负荷急速增长,电网输送容量也亟需提升。在一定条件下,将已有交流线路改为直流线路,既可提高线路的输送容量,又可大幅减小建设投资,受到国内外关注。将上流有限元法进行拓展,应用于同塔双回交流线路改直流线路后同塔多回直流线...随着用电负荷急速增长,电网输送容量也亟需提升。在一定条件下,将已有交流线路改为直流线路,既可提高线路的输送容量,又可大幅减小建设投资,受到国内外关注。将上流有限元法进行拓展,应用于同塔双回交流线路改直流线路后同塔多回直流线路合成电场的计算,模拟试验线段试验结果验证计算方法的有效性。考虑典型500 k V同塔双回交流线路改为±500 k V直流线路,对不同导线型号和直流线路极导线不同排列方式下的导线表面场强和地面合成电场进行计算,并对其特性进行分析。在此基础上,确定改造后直流线路经过非居民区和居民区时的极导线最小高度和线路走廊宽度。结果表明,对于采用常用导线的500 k V同塔双回交流线路,改为±500 k V直流线路,选择适当的极导线排列方式,可以使地面合成电场满足标准要求。展开更多
文摘交直流同塔线路混合电场是决定导线对地高度和走廊宽度从而进行线路优化设计的重要因素。由于其地面横向分布是交流分量和直流分量共同作用的结果,因此其分布特性与两者的叠加和分布特点有着密切的联系。以两回330 k V、750 k V交流线路分别与单回?1100 k V直流线路同塔架设为例,分析了交流线路在不同布置方式与相序排列方式下地面混合电场的分布特性与规律,并据此计算了导线对地最小高度和走廊宽度。结果表明,根据混合电场交、直分量的横向衰减特性,从走廊中心向外,地面混合电场可分为交流分量占主导的"交流区",交、直流分量比例相当的"混合过渡区"以及直流分量占主导的"直流区",为保证地面交、直流分量"错峰"布置,两回交流线路应采用垂直或倒三角排布方式,此时导线最小对地高度按照交流线路单独运行时的情况设计即可。当交流为750 kV线路时,走廊宽度主要由交流电场控制;交流为330 kV线路时,走廊宽度则由交直流电场分量共同控制。最终推荐采用垂直排布的相序6和倒三角排布的相序4两种布置方式。
文摘随着用电负荷急速增长,电网输送容量也亟需提升。在一定条件下,将已有交流线路改为直流线路,既可提高线路的输送容量,又可大幅减小建设投资,受到国内外关注。将上流有限元法进行拓展,应用于同塔双回交流线路改直流线路后同塔多回直流线路合成电场的计算,模拟试验线段试验结果验证计算方法的有效性。考虑典型500 k V同塔双回交流线路改为±500 k V直流线路,对不同导线型号和直流线路极导线不同排列方式下的导线表面场强和地面合成电场进行计算,并对其特性进行分析。在此基础上,确定改造后直流线路经过非居民区和居民区时的极导线最小高度和线路走廊宽度。结果表明,对于采用常用导线的500 k V同塔双回交流线路,改为±500 k V直流线路,选择适当的极导线排列方式,可以使地面合成电场满足标准要求。