Human erythropoietin (hEPO), an endogenous glycoprotein, plays a fundamental role in erythropoiesis controlling the formation of red blood cells. Production of recombinant human erythropoietin (rhEPO) has made it ...Human erythropoietin (hEPO), an endogenous glycoprotein, plays a fundamental role in erythropoiesis controlling the formation of red blood cells. Production of recombinant human erythropoietin (rhEPO) has made it possible for its abuse in competitive sports. In this work, pre-capillary and on-capillary derivatization by 5-furoylquinoline-3-carboxaldehyde (FQ) and fluorescein isothiocyanate (FITC) for the detection of rhEPO by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) were compared. FQ pre-capillary labeling improves sensitivity but degrades the glycoforms separation due to the inhomogeneity of the reaction products from multiple labeling. Compared with FITC pre-capillary derivatization with the excess fluorescent background, the on-capillary FQ derivatization method can provide shorter analysis time, lower background, and better selectivity. It is demonstrated that, through optimizing reaction conditions of FQ on-capillary derivatization, both high sensitivity and satisfactory resolution for the analysis of the be used for the glycoforms profiling and quality control of rhEPO doping control analysis. glycoforms of rhEPO could be obtained. This method can It may be used as a candidate method for fast screening in展开更多
Ultralong phosphorescent materials have numerous applications across biological imaging, lightemitting devices, X-ray detection and anti-counterfeiting. Triplet-state molecular phosphorescence typically accompanies th...Ultralong phosphorescent materials have numerous applications across biological imaging, lightemitting devices, X-ray detection and anti-counterfeiting. Triplet-state molecular phosphorescence typically accompanies the singlet-state fluorescence during photoluminescence, and it is still difficult to achieve direct triplet photoemission as ultralong room temperature phosphorescence(RTP). Here, we have designed Zn-IMDC(IMDC, 4,5-imidazoledicarboxylic acid) and Cd-IMDC, two-dimensional(2D)hydrogen-bond organized metal–organic crystalline microsheets that exhibit rarely direct ultralong RTP upon UV excitation, benefiting from the appropriate heavy-atom effect and multiple triplet energy levels. The excitation-dependent and thermally stimulated ultralong phosphorescence endow the metal–organic systems great opportunities for information safety application and temperature-gated afterglow emission. The well-defined 2D microsheets present color-tunable and anisotropic optical waveguides under different excitation and temperature conditions, providing an effective way to obtain intelligent RTP-based photonic systems at the micro-and nano-scales.展开更多
基金National Natural Science Foundation of China(Grant No.20635001 and 21175005)
文摘Human erythropoietin (hEPO), an endogenous glycoprotein, plays a fundamental role in erythropoiesis controlling the formation of red blood cells. Production of recombinant human erythropoietin (rhEPO) has made it possible for its abuse in competitive sports. In this work, pre-capillary and on-capillary derivatization by 5-furoylquinoline-3-carboxaldehyde (FQ) and fluorescein isothiocyanate (FITC) for the detection of rhEPO by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) were compared. FQ pre-capillary labeling improves sensitivity but degrades the glycoforms separation due to the inhomogeneity of the reaction products from multiple labeling. Compared with FITC pre-capillary derivatization with the excess fluorescent background, the on-capillary FQ derivatization method can provide shorter analysis time, lower background, and better selectivity. It is demonstrated that, through optimizing reaction conditions of FQ on-capillary derivatization, both high sensitivity and satisfactory resolution for the analysis of the be used for the glycoforms profiling and quality control of rhEPO doping control analysis. glycoforms of rhEPO could be obtained. This method can It may be used as a candidate method for fast screening in
基金supported by the Beijing Municipal Natural Science Foundation(JQ20003)the National Natural Science Foundation of China(21771021,21822501,and 22061130206)+3 种基金the Fok Ying-Tong Education Foundation(171008)the Measurements Fund of Beijing Normal Universitythe State Key Laboratory of Heavy Oil Processing。
文摘Ultralong phosphorescent materials have numerous applications across biological imaging, lightemitting devices, X-ray detection and anti-counterfeiting. Triplet-state molecular phosphorescence typically accompanies the singlet-state fluorescence during photoluminescence, and it is still difficult to achieve direct triplet photoemission as ultralong room temperature phosphorescence(RTP). Here, we have designed Zn-IMDC(IMDC, 4,5-imidazoledicarboxylic acid) and Cd-IMDC, two-dimensional(2D)hydrogen-bond organized metal–organic crystalline microsheets that exhibit rarely direct ultralong RTP upon UV excitation, benefiting from the appropriate heavy-atom effect and multiple triplet energy levels. The excitation-dependent and thermally stimulated ultralong phosphorescence endow the metal–organic systems great opportunities for information safety application and temperature-gated afterglow emission. The well-defined 2D microsheets present color-tunable and anisotropic optical waveguides under different excitation and temperature conditions, providing an effective way to obtain intelligent RTP-based photonic systems at the micro-and nano-scales.