应用稳定性理论并结合线路的实际工况分析了结冰导线的舞动机制。经研究发现:气动升力曲线初始斜率为负且其绝对值足够大时,结冰导线可能发生舞动;气动阻力曲线初始斜率为正且足够大时,结冰导线可能发生舞动;气动力矩曲线初始斜率为正...应用稳定性理论并结合线路的实际工况分析了结冰导线的舞动机制。经研究发现:气动升力曲线初始斜率为负且其绝对值足够大时,结冰导线可能发生舞动;气动阻力曲线初始斜率为正且足够大时,结冰导线可能发生舞动;气动力矩曲线初始斜率为正且足够大时,结冰导线可能发生舞动; Den Hartog原理为此结论中的特例。据此结论和对动力学方程的分析得出:结冰导线发生舞动的原因是气动升力曲线初始斜率、气动阻力曲线初始斜率、气动力矩曲线初始斜率可以产生负阻尼或负刚度,从而使得结冰导线吸收风能。展开更多
文摘应用稳定性理论并结合线路的实际工况分析了结冰导线的舞动机制。经研究发现:气动升力曲线初始斜率为负且其绝对值足够大时,结冰导线可能发生舞动;气动阻力曲线初始斜率为正且足够大时,结冰导线可能发生舞动;气动力矩曲线初始斜率为正且足够大时,结冰导线可能发生舞动; Den Hartog原理为此结论中的特例。据此结论和对动力学方程的分析得出:结冰导线发生舞动的原因是气动升力曲线初始斜率、气动阻力曲线初始斜率、气动力矩曲线初始斜率可以产生负阻尼或负刚度,从而使得结冰导线吸收风能。