Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy...Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.展开更多
It is shown to be a relevant study involving terrestrial methods of measurement, such as: forward and backward intersections, geometric leveling, trigonometric leveling with short distance targeted and spatial positi...It is shown to be a relevant study involving terrestrial methods of measurement, such as: forward and backward intersections, geometric leveling, trigonometric leveling with short distance targeted and spatial positioning GNSS methods, for the definition of field reference points and field-object points located in rough terrain. The geodesic structures were implemented in the Historic Site of Olinda employing GNSS (global navigation satellite system) receivers, total stations and digital level. The historical site of Olinda was recorded by UNESCO as Historical and Cultural Heritage of Humanity. The study area is located in the center of the busiest site with a quite roughly relief. This area has been studied since 2007 involving Research of Scientific Initiation and Pos-Graduation Course. This paper aims to present the realized experiments for the implementation and definition of geodesic structures in environments with very rough relief, including large old houses and historic monuments.展开更多
文摘Based on error analysis, the influence of error sources on strapdown inertial navigation systems is discussed. And the maximum permissible component tolerances are established. In order to achieve the desired accuracy (defined by circular error probability), the types of appropriate sensors are chosen. The inertial measurement unit (IMU) is composed of those sensors. It is necessary to calibrate the sensors to obtain their error model coefficients of IMU. After calibration tests, the accuracy is calculated by uniform design method and it is proved that the accuracy of IMU is satisfied for the desired goal.
文摘It is shown to be a relevant study involving terrestrial methods of measurement, such as: forward and backward intersections, geometric leveling, trigonometric leveling with short distance targeted and spatial positioning GNSS methods, for the definition of field reference points and field-object points located in rough terrain. The geodesic structures were implemented in the Historic Site of Olinda employing GNSS (global navigation satellite system) receivers, total stations and digital level. The historical site of Olinda was recorded by UNESCO as Historical and Cultural Heritage of Humanity. The study area is located in the center of the busiest site with a quite roughly relief. This area has been studied since 2007 involving Research of Scientific Initiation and Pos-Graduation Course. This paper aims to present the realized experiments for the implementation and definition of geodesic structures in environments with very rough relief, including large old houses and historic monuments.