A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative naviga...A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative navigation,which can improve the autonomy of the satellite cluster. The ISL topology design problem is formulated as a multi-objective optimization problem where the energy consumption and the navigation performance are considered. Further,the relative navigation is performed in a distributed fashion,where each satellite in the cluster makes observations and communicates with its neighbors via the ISL locally such that the transmission consumption and the computational complexity for the navigation are reduced. The ISL topology optimization problem is solved via the NSGA-Ⅱ algorithm,and the consensus Kalman filter is used for the distributed relative navigation. The proposed approach is flexible to varying tasks,with satellites joining or leaving the cluster anytime,and is robust to the failure of an individual satellite. Numerical simulations are presented to verify the feasibility of the proposed approach.展开更多
Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (ME...Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
Navigation augmentation technology is one of the most common methods to increase the continuity,reliability and integrity of the global satellite navigation system.The concept of volunteer augmentation navigation (VNA...Navigation augmentation technology is one of the most common methods to increase the continuity,reliability and integrity of the global satellite navigation system.The concept of volunteer augmentation navigation (VNA) is proposed and the elements and topological structure of VNA are also analyzed in this paper.The study focuses on the neural network model that volunteers and ordinary users use modern communication information network to exchange self-organizing information.The neural cell model of Volunteer Augmentation Navigation using shared information is built.Thus interactive general relative positioning is realized.Then basic theories and methods of volunteer augmentation navigation are formed on the basis of the above-mentioned study.This study of realization mechanism of volunteer augmentation technology helps to form a relatively integral architecture of volunteer augmentation navigation.A user self-service satellite navigation augmentation which combines information exchange and navigation services may strengthen the continuity,reliability and integrity of the navigation system.The volunteer augmentation navigation theory proposed in this paper improves the traditional satellite navigation application model and expands the connotation and denotation of satellite navigation augmentation methods.展开更多
基金supported by the National Natural Science Foundation of China(No.61801213)。
文摘A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative navigation,which can improve the autonomy of the satellite cluster. The ISL topology design problem is formulated as a multi-objective optimization problem where the energy consumption and the navigation performance are considered. Further,the relative navigation is performed in a distributed fashion,where each satellite in the cluster makes observations and communicates with its neighbors via the ISL locally such that the transmission consumption and the computational complexity for the navigation are reduced. The ISL topology optimization problem is solved via the NSGA-Ⅱ algorithm,and the consensus Kalman filter is used for the distributed relative navigation. The proposed approach is flexible to varying tasks,with satellites joining or leaving the cluster anytime,and is robust to the failure of an individual satellite. Numerical simulations are presented to verify the feasibility of the proposed approach.
基金supported by the Shanghai Committee of Science and Technology,China (Grant No.11ZR1443500)the National Natural Science Foundation of China (Grant No.11033004)
文摘Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.
基金supported by the National Basic Research Program of China (Grant No.2007CB815502)the West Light Foundation of the Chinese Academy of Sciences (Grant No.Y001YR2701)
文摘Navigation augmentation technology is one of the most common methods to increase the continuity,reliability and integrity of the global satellite navigation system.The concept of volunteer augmentation navigation (VNA) is proposed and the elements and topological structure of VNA are also analyzed in this paper.The study focuses on the neural network model that volunteers and ordinary users use modern communication information network to exchange self-organizing information.The neural cell model of Volunteer Augmentation Navigation using shared information is built.Thus interactive general relative positioning is realized.Then basic theories and methods of volunteer augmentation navigation are formed on the basis of the above-mentioned study.This study of realization mechanism of volunteer augmentation technology helps to form a relatively integral architecture of volunteer augmentation navigation.A user self-service satellite navigation augmentation which combines information exchange and navigation services may strengthen the continuity,reliability and integrity of the navigation system.The volunteer augmentation navigation theory proposed in this paper improves the traditional satellite navigation application model and expands the connotation and denotation of satellite navigation augmentation methods.