期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于导航星域和K矢量的快速星图识别算法 被引量:12
1
作者 邢飞 尤政 董瑛 《宇航学报》 EI CAS CSCD 北大核心 2010年第10期2302-2308,共7页
星图识别算法是星敏感器的关键技术,快速性和可靠性一直是对其评价的重要指标。提出了基于K矢量查找表和导航星域联合进行超快速星图识别的方法。首先根据星敏感器视场和所能敏感的星等建立全天球导航星表;再依据K矢量的原则对全天的导... 星图识别算法是星敏感器的关键技术,快速性和可靠性一直是对其评价的重要指标。提出了基于K矢量查找表和导航星域联合进行超快速星图识别的方法。首先根据星敏感器视场和所能敏感的星等建立全天球导航星表;再依据K矢量的原则对全天的导航星按照星对角距进行分类,建立星对角距所对应导航星的K矢量和K矢量查找表。利用星敏感器视场中的4颗星构成6组星对角距,将其中的5组星对角距所对应K矢量查找表域的星对组进行导航星表域(简称导航星域)的变换,根据另外一组星对角距所对应的K矢量查找表域的值对前面5组导航星域的值同时进行索引比较,直接找到了满足条件的4颗导航星,即完成全天的星图识别。最后,通过计算机仿真,实验室模拟和真实星空实验三个层次验证了此方法的可靠性和快速性。 展开更多
关键词 星图识别 星敏感器 导航星域 K矢量 真实星空
下载PDF
Orbit determination and time synchronization for a GEO/IGSO satellite navigation constellation with regional tracking network 被引量:47
2
作者 ZHOU ShanShi HU XiaoGong +9 位作者 WU Bin LIU Li QU WeiJing GUO Rui HE Feng CAO YueLing Wu XiaoLi ZHU LingFeng SHI Xin TAN HongLi 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第6期1089-1097,共9页
Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (ME... Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s. 展开更多
关键词 POD time synchronization clock errors elimination SLR evaluation
原文传递
Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system 被引量:130
3
作者 YANG YuanXi LI JinLong +5 位作者 WANG AiBing XU JunYi HE HaiBo GUO HaiRong SHEN JunFei DAI Xian 《Science China Earth Sciences》 SCIE EI CAS 2014年第1期144-152,共9页
BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel... BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements. 展开更多
关键词 BeiDou navigation satellite system service area dilution of precision precision of code and carrier phase measurement single point positioning code differential positioning ambiguity resolution carrier phase differential positioning
原文传递
The wide-area difference system for the regional satellite navigation system of COMPASS 被引量:21
4
作者 CAO YueLing HU XiaoGong +6 位作者 WU Bin ZHOU ShanShi LIU Li SU RanRan CHANG ZhiQiao HE Feng ZHOU JianHua 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第7期1307-1315,共9页
The regional satellite navigation system of COMPASS (Phase I) provides both open services and authorized services. Authorized services offer differential corrections and integrity information to users to support highe... The regional satellite navigation system of COMPASS (Phase I) provides both open services and authorized services. Authorized services offer differential corrections and integrity information to users to support higher positioning, navigation and timing precision. Experimenting with real data, positioning accuracy is estimated with a 3GEO/4IGSO COMPASS constellation. The results show that with dual-frequency and single-frequency pseudo-range measurements, the positioning errors are respectively 8 and 10 m (RMS) for open service users, while for authorized users, the errors are 4 and 5 m (RMS), respectively. The COMPASS constellation geometry may cause large error to occur in the height component by 7-9 m for dualor single-frequency users, which can be effectively reduced with the differential corrections supplied by the authorized services. Multipath errors are identified and corrected for COMPASS, resulting in 25% positioning accuracy improvement for dual-frequency users and 10% improvement for single-frequency users. 展开更多
关键词 COMPASS equivalent satellite clock error ionospheric grid multipath error positioning error
原文传递
Multipath error detection and correction for GEO/IGSO satellites 被引量:33
5
作者 WU XiaoLi ZHOU JianHua +2 位作者 WANG Gang HU XiaoGong CAO YueLing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第7期1297-1306,共10页
Constellations of regional satellite navigation systems are usually constituted of geostationary satellites (GEO) and inclined geostationary satellites (IGSO) for better service availability. Analysis of real data sho... Constellations of regional satellite navigation systems are usually constituted of geostationary satellites (GEO) and inclined geostationary satellites (IGSO) for better service availability. Analysis of real data shows that the pseudorange measurements of these two types of satellites contain significant multipath errors and code noise, and the multipath for GEO is extremely serious, which is harmful to system services. In contrast, multipath error of carrier phase measurements is less than 3 cm, which is smaller than the multipath of pseudorange measurements by two orders of magnitude. Using a particular combination of pseudorange and dual-frequency carrier phase measurements, the pseudorange multipath errors are detected, and their time varying features are analyzed. A real-time multipath correction algorithm is proposed in this paper, which is called CNMC (Code Noise and Multipath Correction). The algorithm decreases the influence of the multipath error and therefore ensures the performance of the system. Data processing experiments show that the multipath error level may be reduced from 0.5 m to 0.15 m by using this algorithm, and 60% of GEO multipath errors and 42% of IGSO multipath errors are successfully corrected with CNMC. Positioning experiments are performed with a constellation of 3 GEO plus 3 IGSO satellites. For dual-frequency users the East-West position accuracy is improved from 1.31 m to 0.94 m by using the CNMC algorithm, the South-North position accuracy is improved from 2.62 m to 2.29 m, and the vertical position accuracy is improved from 4.25 m to 3.05 m. After correcting multipath errors, the three-dimensional position accuracy is improved from 5.16 m to 3.94 m. 展开更多
关键词 multipath error carrier smoothing pseudorange GEO satellite position error
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部