终端区航空器的飞行密度和复杂度较高,此管制区域的处理能力是制约航空体系效率的瓶颈,对进场航空器管制效率进行量化研究,有助于提高管制工作处理能力和质量。首先,提出以区域导航(RNAV,regional area navigation)标准仪表进场程序的...终端区航空器的飞行密度和复杂度较高,此管制区域的处理能力是制约航空体系效率的瓶颈,对进场航空器管制效率进行量化研究,有助于提高管制工作处理能力和质量。首先,提出以区域导航(RNAV,regional area navigation)标准仪表进场程序的标称里程为计算基准量化进场管制效率,通过随机搜索聚类算法的结果得到航空器使用的RNAV标准仪表进场程序,选用在北京首都国际机场着陆的航空器为分析对象,计算航空器的进场管制效率,结合航迹讨论不同RNAV标准仪表进场程序下航空器的运行方式及特点。其次,对进场管制效率的影响因素进行分析,并采用灰色关联分析法量化各影响因素的影响程度与权重,结果显示:雷达引导度和航行三要素改变次数对进场管制效率具有显著影响,飞行流量和RNAV标准仪表进场程序的标称里程对进场管制效率的影响相对较小。继而,从影响因素角度出发评估整体进场管制效率,得到更为全面客观的整体进场管制效率。最后,尝试从RNAV进场程序路径以及优良管制行为模式两方面寻求进场管制效率的提升途径和方法。展开更多
This paper proposed a multi-agent based architecture for outdoor mobile robot navigation where event-driven control is used to handle the dynamically changing of the environment. With the support of a distributed comm...This paper proposed a multi-agent based architecture for outdoor mobile robot navigation where event-driven control is used to handle the dynamically changing of the environment. With the support of a distributed communication infrastructure and an event-driven situation evaluation agent, the robot can initiate action adaptive to the dynamical changes in the environment through reorganize its internal architecture. Adaptiveness and feasibility of the proposed architecture is validated through navi- gation experiments on the robot in a variety of natural outdoor environments.展开更多
文摘终端区航空器的飞行密度和复杂度较高,此管制区域的处理能力是制约航空体系效率的瓶颈,对进场航空器管制效率进行量化研究,有助于提高管制工作处理能力和质量。首先,提出以区域导航(RNAV,regional area navigation)标准仪表进场程序的标称里程为计算基准量化进场管制效率,通过随机搜索聚类算法的结果得到航空器使用的RNAV标准仪表进场程序,选用在北京首都国际机场着陆的航空器为分析对象,计算航空器的进场管制效率,结合航迹讨论不同RNAV标准仪表进场程序下航空器的运行方式及特点。其次,对进场管制效率的影响因素进行分析,并采用灰色关联分析法量化各影响因素的影响程度与权重,结果显示:雷达引导度和航行三要素改变次数对进场管制效率具有显著影响,飞行流量和RNAV标准仪表进场程序的标称里程对进场管制效率的影响相对较小。继而,从影响因素角度出发评估整体进场管制效率,得到更为全面客观的整体进场管制效率。最后,尝试从RNAV进场程序路径以及优良管制行为模式两方面寻求进场管制效率的提升途径和方法。
文摘This paper proposed a multi-agent based architecture for outdoor mobile robot navigation where event-driven control is used to handle the dynamically changing of the environment. With the support of a distributed communication infrastructure and an event-driven situation evaluation agent, the robot can initiate action adaptive to the dynamical changes in the environment through reorganize its internal architecture. Adaptiveness and feasibility of the proposed architecture is validated through navi- gation experiments on the robot in a variety of natural outdoor environments.