The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve auto...The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.展开更多
Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the mu...Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the much smaller time constant, its dynamic model can be greatly simplified. Results and Conclusion In guided bomb guidance/control digital simulation, with the use of the simplified seeker model, simulation time can be reduced without the loss of simulation accuracy.展开更多
Because the vector of angular momentum of ESG (electrostatically suspended gyroscope) maintains the fixed direction in inertial space, it may be regarded as a fixed star. The astronavigation aigorithm is used to estim...Because the vector of angular momentum of ESG (electrostatically suspended gyroscope) maintains the fixed direction in inertial space, it may be regarded as a fixed star. The astronavigation aigorithm is used to estimate the azimuth angle and the gyro constant drift in the paper. The relative errors which affect the estimation accuracy of the azimuth angle are the analysed.展开更多
To increase accuracy of navigation parameters,a perspective measuring complex with intellectual components is developed.Conception of synthesis optimal structure of the measuring complex is realized basing on a select...To increase accuracy of navigation parameters,a perspective measuring complex with intellectual components is developed.Conception of synthesis optimal structure of the measuring complex is realized basing on a selective method using principles of the functional systems.Selection of measured information is finished by original numeric criterion of observation level of state vector components.Prediction is realized by algorithm of self-organization that makes synthesis of the optimal complication.Therefore mechanism of self-regulation is realized and accuracy of the selective navigation complex is increased.展开更多
Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the ...Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.展开更多
基金National Key Research and Development Program of China(2022YFD2202103)National Natural Science Foundation of China(31971798)+2 种基金Zhejiang Provincial Key Research&Development Plan(2023C02049、2023C02053)SNJF Science and Technology Collaborative Program of Zhejiang Province(2022SNJF017)Hangzhou Agricultural and Social Development Research Project(202203A03)。
文摘The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.
文摘Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the much smaller time constant, its dynamic model can be greatly simplified. Results and Conclusion In guided bomb guidance/control digital simulation, with the use of the simplified seeker model, simulation time can be reduced without the loss of simulation accuracy.
文摘Because the vector of angular momentum of ESG (electrostatically suspended gyroscope) maintains the fixed direction in inertial space, it may be regarded as a fixed star. The astronavigation aigorithm is used to estimate the azimuth angle and the gyro constant drift in the paper. The relative errors which affect the estimation accuracy of the azimuth angle are the analysed.
文摘To increase accuracy of navigation parameters,a perspective measuring complex with intellectual components is developed.Conception of synthesis optimal structure of the measuring complex is realized basing on a selective method using principles of the functional systems.Selection of measured information is finished by original numeric criterion of observation level of state vector components.Prediction is realized by algorithm of self-organization that makes synthesis of the optimal complication.Therefore mechanism of self-regulation is realized and accuracy of the selective navigation complex is increased.
基金supported by the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund(No.SAST 2020-019)。
文摘Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.