The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improv...The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.展开更多
To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environme...To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.展开更多
There is a discharge control feature of construction diversion system with the upstream operational reservoir. The risk evaluation model of construction diversion is established by taking into consideration the risk f...There is a discharge control feature of construction diversion system with the upstream operational reservoir. The risk evaluation model of construction diversion is established by taking into consideration the risk factors of construction diversion system with discharge control feature as well as their composition. And the risk factors include the upstream operational reservoir discharge control, the interval flood and branch flood and the diversion system itself. And then based on analyzing of the conversion relation between risk index and investment index of diversion scheme, the risk control and conversion principals of diversion system are put forward, and the feasible diversion scheme model is built. At last, the risk and economic evaluation and scheme economic feasibility analysis method of diversion scheme are shown by an example of construction diversion scheme optimization with the discharge control condition of upstream hydropower station. The study is valuable for establishment and optimization of construction diversion scheme with upstream reservoir discharge control.展开更多
It has been revealed experimentally that astrocytes can participate in synaptic transmission by modulating and responding to the release of neurotransmitters with calcium elevations. Researches suggest that seizure-li...It has been revealed experimentally that astrocytes can participate in synaptic transmission by modulating and responding to the release of neurotransmitters with calcium elevations. Researches suggest that seizure-like discharges(SDs) or seizure-like firings(SFs) in neurons, characterizing neurological disorder, may arise locally in restricted areas(focal area) and then propagate throughout the brain. But the underlying mechanism remains unclear. To study the possible role astrocytes playing in the SDs propagation, we construct a minimal neuron-astrocyte network model by connecting a neurons chain and an astrocytes chain.The focal area is modelled by an IP3 reservoir which provides persistent IP3 out-flux. The study suggests that calcium wave propagation in astrocytes determines the propagation of SDs in the connected neurons. On the other hand, SDs in neurons allows the calcium wave propagates longer distance in the astrocytes, which suggests the mutually cooperating of astrocytes and neurons in accomplishing SD propagation. Furthermore, once SDs propagate and occupy the neuron network, it could not be terminated by recovery of the focal area. The results may imply that treatment of brain disorders should not only focus on local area but the whole neuron network.展开更多
文摘The laser gyro is most su it able for building the strap down inertial navigation system (SINS), and its acc uracy of attitude algorithm can enormously affect that of the laser SINS. This p aper develops three improved algorithmal expressions for strap down attitude ut ilizing the angular increment output by the laser gyro from the last two and cur rent updating periods according to the number of gyro samples, and analyses the algorithm error in the classical coning motion. Compared with the conventional algorithms, simulational results show that this improved algorithm has higher precision. A new way to improve the rotation vector algorithms is provided.
基金Pre-Research Program of General Armament Department during the11th Five-Year Plan Period (No51309020503)the National Defense Basic Research Program of China (973Program)(No973-61334)+1 种基金the National Natural Science Foundation of China(No50575042)Specialized Research Fund for the Doctoral Program of Higher Education (No20050286026)
文摘To improve the navigation accuracy of an autonomous underwater vehicle (AUV), a novel terrain passive integrated navigation system (TPINS) is presented. According to the characteristics of the underwater environment and AUV navigation requirements of low cost and high accuracy, a novel TPINS is designed with a configuration of the strapdown inertial navigation system (SINS), the terrain reference navigation system (TRNS), the Doppler velocity sonar (DVS), the magnetic compass and the navigation computer utilizing the unscented Kalman filter (UKF) to fuse the navigation information from various navigation sensors. Linear filter equations for the extended Kalman filter (EKF), nonlinear filter equations for the UKF and measurement equations of navigation sensors are addressed. It is indicated from the comparable simulation experiments of the EKF and the UKF that AUV navigation precision is improved substantially with the proposed sensors and the UKF when compared to the EKF. The TPINS designed with the proposed sensors and the UKF is effective in reducing AUV navigation position errors and improving the stability and precision of the AUV underwater integrated navigation.
基金National Natural Science Foundation of China ( No. 10902078 and No. 51079115)
文摘There is a discharge control feature of construction diversion system with the upstream operational reservoir. The risk evaluation model of construction diversion is established by taking into consideration the risk factors of construction diversion system with discharge control feature as well as their composition. And the risk factors include the upstream operational reservoir discharge control, the interval flood and branch flood and the diversion system itself. And then based on analyzing of the conversion relation between risk index and investment index of diversion scheme, the risk control and conversion principals of diversion system are put forward, and the feasible diversion scheme model is built. At last, the risk and economic evaluation and scheme economic feasibility analysis method of diversion scheme are shown by an example of construction diversion scheme optimization with the discharge control condition of upstream hydropower station. The study is valuable for establishment and optimization of construction diversion scheme with upstream reservoir discharge control.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2014QNA64(J.T.))
文摘It has been revealed experimentally that astrocytes can participate in synaptic transmission by modulating and responding to the release of neurotransmitters with calcium elevations. Researches suggest that seizure-like discharges(SDs) or seizure-like firings(SFs) in neurons, characterizing neurological disorder, may arise locally in restricted areas(focal area) and then propagate throughout the brain. But the underlying mechanism remains unclear. To study the possible role astrocytes playing in the SDs propagation, we construct a minimal neuron-astrocyte network model by connecting a neurons chain and an astrocytes chain.The focal area is modelled by an IP3 reservoir which provides persistent IP3 out-flux. The study suggests that calcium wave propagation in astrocytes determines the propagation of SDs in the connected neurons. On the other hand, SDs in neurons allows the calcium wave propagates longer distance in the astrocytes, which suggests the mutually cooperating of astrocytes and neurons in accomplishing SD propagation. Furthermore, once SDs propagate and occupy the neuron network, it could not be terminated by recovery of the focal area. The results may imply that treatment of brain disorders should not only focus on local area but the whole neuron network.