Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo...Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
In the current aera of rapid development in the field of electric vehicles and electrochemical energy storage,solid-state battery technology is attracting much research and attention.Solid-state electrolytes,as the ke...In the current aera of rapid development in the field of electric vehicles and electrochemical energy storage,solid-state battery technology is attracting much research and attention.Solid-state electrolytes,as the key component of next-generation battery technology,are favored for their high safety,high energy density,and long life.However,finding high-performance solid-state electrolytes is the primary challenge for solid-state battery applications.Focusing on inorganic solid-state electrolytes,this work highlights the need for ideal solid-state electrolytes to have low electronic conductivity,good thermal stability,and structural and phase stability.Traditional experimental and theoretical computational methods suffer from inefficiency,thus machine learning methods become a novel path to intelligently predict material properties by analyzing a large number of inorganic structural properties and characteristics.Through the gradient descent-based XGBoost algorithm,we successfully predicted the energy band structure and stability of the materials,and screened out only 194 ideal solid-state electrolyte structures from more than 6000 structures that satisfy the requirements of low electronic conductivity and stability simultaneously,which greatly accelerated the development of solid-state batteries.展开更多
Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distributi...Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distribution and the wall heat flux distribution in both axial and radial direction can be calculated by the temperature distribution of the liquid medium both inside and outside the cylinder with temperature changing in axial direction.The calculation results are almost consistent with the experience results.The applicative condition of the formulae in this paper consists with most of practice.They can be applied to the engineering calculation of the steady heat conduction.The calculation is simple and accurate.展开更多
Magnetic anomalies are often disturbed by the magnetization direction, so we can't directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insen...Magnetic anomalies are often disturbed by the magnetization direction, so we can't directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.展开更多
The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt sy...The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.展开更多
[Objective] This study aimed to solve the mulch plastic film pollution problems in Xinjiang, in order to provide reliable theoretical basis for the research on the degradation mechanism of biodegradable plastic films....[Objective] This study aimed to solve the mulch plastic film pollution problems in Xinjiang, in order to provide reliable theoretical basis for the research on the degradation mechanism of biodegradable plastic films. [Method] The effect of illumination intensity on the decomposition of decomposable mulching films was investigated through simulating the field condition in laboratory. Regression analysis was employed to fit the processes of film decompositions. [Result] The weight loss ratios of different types of plastic films were closely related with the illumination. There was no sundry produced during the degradation process, but the weight was reduced, indicating that degradation produced gas, thus, ultraviolet rays had destructive effect on mulch plastic films. Different types of plastic films showed significant differences in the degradation speeds, and under the same conditions, the degradation speed of S4# with the induction period of 30 d was the fastest. With the extension of uv illumination time, the degradation became cumulative degradation process. [Conclusion] Under the uv rays, the weight loss ratio and illumination hours is regarded as a positive correlation relationship. The significant inspection shows that the data fitted degradation model can be described by the logistic model of Y = a/(1+b×e -ct), and all the parameters show significant differences (P0.01).展开更多
A methodology is presented whereby a neural network is used to learn the inverse kinematic relationships of the position and orientation of a six joint manipulator. The arm solution for the orientation of a manipulato...A methodology is presented whereby a neural network is used to learn the inverse kinematic relationships of the position and orientation of a six joint manipulator. The arm solution for the orientation of a manipulator using a self organizing neural net is studied in this paper. A new training model of the self organizing neural network is proposed by thoroughly studying Martinetz, Ritter and Schulten′s self organizing neural network based on Kohonen′s self organizing mapping algorithm using a Widrow Hoff type error correction rule and closely combining the characters of the inverse kinematic relationship for a robot arm. The computer simulation results for a PUMA 560 robot show that the proposed method has a significant improvement over other methods documented in the references in self organizing capability and precision by training process.展开更多
WT8.BZ]A new quasi 2-dimensional analytical approach to predicting the ring voltage,edge peak fields and optimal spacing of the planar junction with a single floating field limiting ring structure has been proposed,ba...WT8.BZ]A new quasi 2-dimensional analytical approach to predicting the ring voltage,edge peak fields and optimal spacing of the planar junction with a single floating field limiting ring structure has been proposed,based on the cylindrical symmetric solution and the critical field concept.The effects of the spacing and reverse voltage on the ring junction voltage and edge peak field profiles have been analyzed.The optimal spacing and the maximum breakdown voltage of the structure have also been obtained.The analytical results are in excellent agreement with that obtained from the 2-D device simulator,MEDICI and the reported result,which proves the presented model valid.展开更多
Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and...Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.展开更多
The hydrolysis process of Ru(III) complex (HL)[trans-RuC14L(dmso-S)] (L=l-methyl-l,2,4- triazole and dmso-S=S-dimethyl sulfoxide) (1), a potential antitumor complex similar to the well-known antitumor agent ...The hydrolysis process of Ru(III) complex (HL)[trans-RuC14L(dmso-S)] (L=l-methyl-l,2,4- triazole and dmso-S=S-dimethyl sulfoxide) (1), a potential antitumor complex similar to the well-known antitumor agent (Him)[trans-RuC14 (dmso-S)(im)] (NAMI-A, im=imidazole), was investigated using density functional theory combined with the conductor-like polarizable continuum model approach. Tile structural characteristics and the detailed energy profiles for the hydrolysis processes of this complex were obtained. For the first hydrolysis step, complex 1 has slightly higher barrier energies than the reported anticancer drug NAMI-A, and the result is in accordance with the experimental evidence indicating larger half-life for complex 1. For the second hydrolysis step, the formation of cis-diaqua species is thermodynamic preferred to that of trans isomers. In addition, on the basis of the analysis of electronic characteristics of species in the hydrolysis process, the trend in nucleophilic attack abilities of hydrolysis products by pertinent biomolecules is revealed and predicted.展开更多
Removal of Co(Ⅱ) from aqueous solutions by complexation-ultrafiltration was investigated using polyacrylic acid sodium(PAAS) as complexing agent with the help of rotating disk membrane,and the shear ability of PAA-Co...Removal of Co(Ⅱ) from aqueous solutions by complexation-ultrafiltration was investigated using polyacrylic acid sodium(PAAS) as complexing agent with the help of rotating disk membrane,and the shear ability of PAA-Co complex was studied. The effects of the mass ratio of PAAS to Co(Ⅱ)(P/M) and pH on the rejection of Co(Ⅱ) were studied,and the optimum conditions were P/M=8 and pH=7. The rejection of Co(Ⅱ) was over 97% when the rotating speed of the disk(n)was less than 710 r/min at the optimum P/M and pH. The distribution of the forms of cobalt on the membrane surface was established by the membrane partition model, and the critical shear rate,the smallest shear rate at which the PAA-Co complex begins to dissociate,was calculated to be1.4×10^4 s^-1,and the corresponding rotating speed was 710 r/min.The PAA-Co complex dissociated when the shear rate was greater than the critical one. The regeneration of PAAS and recovery of Co(Ⅱ) were achieved by shear-induced dissociation and ultrafiltration.展开更多
A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+-X1∑+ transition of Cull has been presented. The Cull molecule, as well as its deuterated isotopologue CuD, ...A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+-X1∑+ transition of Cull has been presented. The Cull molecule, as well as its deuterated isotopologue CuD, are produced in a supersonic jet expansion by discharging H2 (or D2) and Ar gas mixtures using two copper needles. Different profiles of relative line intensities are observed between the measured LIF and CRD spectra, providing an experimental evidence for the predissociation behavior in the A1∑+ state of Cull. The lifetimes of individual upper rotational levels are measured by LIF, in which the J'-dependent predisso- ciation rates are obtained. Based on the previous theoretical calculations, a predissociation mechanism is concluded due to the strong spin-orbit coupling between the A1∑+ state and the lowest-lying triplet 3∑+ state, and a tunneling effect may also be involved in the predis- sociation. Similar experiments are also performed for CuD, showing that the A1∑+ state of CuD does not undergo a predissociation process.展开更多
Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and ...Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.展开更多
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金supported by the National Natural Science Foundation of China(No.21421063,No.21473166,No.21573211,No.21633007,No.21790350,No.21803067,No.91950207)the Chinese Academy of Sciences(QYZDB-SSW-SLH018)+3 种基金the Anhui Initiative in Quantum Information Technologies(AHY090200)the USTC-NSRL Joint Funds(UN2018LHJJ)the Anhui Provincial Natural Science Foundation(2108085QB63)Numerical Theoretical simulations were done in the Supercomputing Center of USTC.
文摘In the current aera of rapid development in the field of electric vehicles and electrochemical energy storage,solid-state battery technology is attracting much research and attention.Solid-state electrolytes,as the key component of next-generation battery technology,are favored for their high safety,high energy density,and long life.However,finding high-performance solid-state electrolytes is the primary challenge for solid-state battery applications.Focusing on inorganic solid-state electrolytes,this work highlights the need for ideal solid-state electrolytes to have low electronic conductivity,good thermal stability,and structural and phase stability.Traditional experimental and theoretical computational methods suffer from inefficiency,thus machine learning methods become a novel path to intelligently predict material properties by analyzing a large number of inorganic structural properties and characteristics.Through the gradient descent-based XGBoost algorithm,we successfully predicted the energy band structure and stability of the materials,and screened out only 194 ideal solid-state electrolyte structures from more than 6000 structures that satisfy the requirements of low electronic conductivity and stability simultaneously,which greatly accelerated the development of solid-state batteries.
文摘Using the variable transformation method,the formulae of the axial symmetrical wall temperature distribution during steady heat conduction of a hollow cylinder are derived in this paper.The wall temperature distribution and the wall heat flux distribution in both axial and radial direction can be calculated by the temperature distribution of the liquid medium both inside and outside the cylinder with temperature changing in axial direction.The calculation results are almost consistent with the experience results.The applicative condition of the formulae in this paper consists with most of practice.They can be applied to the engineering calculation of the steady heat conduction.The calculation is simple and accurate.
基金supported by the Special Investigation and Assessment of Geological Mineral Resources of the China Geological Survey(No.GZH003-07-03)
文摘Magnetic anomalies are often disturbed by the magnetization direction, so we can't directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.
基金Project (2007CB210305) supported by the National Basic Research Program of ChinaProject (51074045) supported by the National Natural Science Foundation of China
文摘The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.
基金Supported by the National Key Technology R&D Program (2007BAC20B01)the Fund for Postgraduate of Tarim University (TDZKSS06004)~~
文摘[Objective] This study aimed to solve the mulch plastic film pollution problems in Xinjiang, in order to provide reliable theoretical basis for the research on the degradation mechanism of biodegradable plastic films. [Method] The effect of illumination intensity on the decomposition of decomposable mulching films was investigated through simulating the field condition in laboratory. Regression analysis was employed to fit the processes of film decompositions. [Result] The weight loss ratios of different types of plastic films were closely related with the illumination. There was no sundry produced during the degradation process, but the weight was reduced, indicating that degradation produced gas, thus, ultraviolet rays had destructive effect on mulch plastic films. Different types of plastic films showed significant differences in the degradation speeds, and under the same conditions, the degradation speed of S4# with the induction period of 30 d was the fastest. With the extension of uv illumination time, the degradation became cumulative degradation process. [Conclusion] Under the uv rays, the weight loss ratio and illumination hours is regarded as a positive correlation relationship. The significant inspection shows that the data fitted degradation model can be described by the logistic model of Y = a/(1+b×e -ct), and all the parameters show significant differences (P0.01).
文摘A methodology is presented whereby a neural network is used to learn the inverse kinematic relationships of the position and orientation of a six joint manipulator. The arm solution for the orientation of a manipulator using a self organizing neural net is studied in this paper. A new training model of the self organizing neural network is proposed by thoroughly studying Martinetz, Ritter and Schulten′s self organizing neural network based on Kohonen′s self organizing mapping algorithm using a Widrow Hoff type error correction rule and closely combining the characters of the inverse kinematic relationship for a robot arm. The computer simulation results for a PUMA 560 robot show that the proposed method has a significant improvement over other methods documented in the references in self organizing capability and precision by training process.
文摘WT8.BZ]A new quasi 2-dimensional analytical approach to predicting the ring voltage,edge peak fields and optimal spacing of the planar junction with a single floating field limiting ring structure has been proposed,based on the cylindrical symmetric solution and the critical field concept.The effects of the spacing and reverse voltage on the ring junction voltage and edge peak field profiles have been analyzed.The optimal spacing and the maximum breakdown voltage of the structure have also been obtained.The analytical results are in excellent agreement with that obtained from the 2-D device simulator,MEDICI and the reported result,which proves the presented model valid.
基金The National Hi-Tech Development Plan (863-317-03-01-02-04-20).
文摘Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.
基金This work was supported by the National Natural Science Foundation of China (No.20903027), the Natural Science Foundation of Guangdong Province (No.9452402301001941), and the Doctor Startup Fund of Guangdong Medical College (No.XB0802 and No.XB0804).
文摘The hydrolysis process of Ru(III) complex (HL)[trans-RuC14L(dmso-S)] (L=l-methyl-l,2,4- triazole and dmso-S=S-dimethyl sulfoxide) (1), a potential antitumor complex similar to the well-known antitumor agent (Him)[trans-RuC14 (dmso-S)(im)] (NAMI-A, im=imidazole), was investigated using density functional theory combined with the conductor-like polarizable continuum model approach. Tile structural characteristics and the detailed energy profiles for the hydrolysis processes of this complex were obtained. For the first hydrolysis step, complex 1 has slightly higher barrier energies than the reported anticancer drug NAMI-A, and the result is in accordance with the experimental evidence indicating larger half-life for complex 1. For the second hydrolysis step, the formation of cis-diaqua species is thermodynamic preferred to that of trans isomers. In addition, on the basis of the analysis of electronic characteristics of species in the hydrolysis process, the trend in nucleophilic attack abilities of hydrolysis products by pertinent biomolecules is revealed and predicted.
基金Project(24176265)supported by the National Natural Science Foundation of China
文摘Removal of Co(Ⅱ) from aqueous solutions by complexation-ultrafiltration was investigated using polyacrylic acid sodium(PAAS) as complexing agent with the help of rotating disk membrane,and the shear ability of PAA-Co complex was studied. The effects of the mass ratio of PAAS to Co(Ⅱ)(P/M) and pH on the rejection of Co(Ⅱ) were studied,and the optimum conditions were P/M=8 and pH=7. The rejection of Co(Ⅱ) was over 97% when the rotating speed of the disk(n)was less than 710 r/min at the optimum P/M and pH. The distribution of the forms of cobalt on the membrane surface was established by the membrane partition model, and the critical shear rate,the smallest shear rate at which the PAA-Co complex begins to dissociate,was calculated to be1.4×10^4 s^-1,and the corresponding rotating speed was 710 r/min.The PAA-Co complex dissociated when the shear rate was greater than the critical one. The regeneration of PAAS and recovery of Co(Ⅱ) were achieved by shear-induced dissociation and ultrafiltration.
基金This work is financially supported by the National Basic Research Program of China (No.2010CB923302 and No.2013CB834602), the National Natural Science Foundation of China (No.21273212, No.21173205, and No.91127042), the Fundamental Research Funds for the Central Universities and Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+-X1∑+ transition of Cull has been presented. The Cull molecule, as well as its deuterated isotopologue CuD, are produced in a supersonic jet expansion by discharging H2 (or D2) and Ar gas mixtures using two copper needles. Different profiles of relative line intensities are observed between the measured LIF and CRD spectra, providing an experimental evidence for the predissociation behavior in the A1∑+ state of Cull. The lifetimes of individual upper rotational levels are measured by LIF, in which the J'-dependent predisso- ciation rates are obtained. Based on the previous theoretical calculations, a predissociation mechanism is concluded due to the strong spin-orbit coupling between the A1∑+ state and the lowest-lying triplet 3∑+ state, and a tunneling effect may also be involved in the predis- sociation. Similar experiments are also performed for CuD, showing that the A1∑+ state of CuD does not undergo a predissociation process.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21303037), China Postdoctoral Science Foundation (No.2013M53150), and tile Fundamental Research Funds for the Central Univcrsitics (No.2012HGZY0001).
文摘Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively.