A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were de...A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were designed.Using 4 L-type and 4 T-type HOM couplers,the longitudinal impedance and the transverse impedances were suppressed to below 3 kΩand 30 kΩ/m,respectivly.The HOM damping requirements of Hefei Advanced Light Facility(HALF)were satisfied.This paper conducted an in-depth study on the radio frequency(RF)design,multipacting optimization,and thermal analysis of these coaxial couplers.Simulation results indicated that under operating acceleration voltage,the optimized couplers does not exhibit multiplicating or thermal breakdown phenomena.The cavity has the potential to reach a higher acceleration gradient.展开更多
Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
A 2.7-4.0 GHz dual-mode auto frequency calibration(AFC) fast locking PLL was designed for navigation system on chip(SoC). The SoC was composed of one radio frequency(RF) receiver, one baseband and several system contr...A 2.7-4.0 GHz dual-mode auto frequency calibration(AFC) fast locking PLL was designed for navigation system on chip(SoC). The SoC was composed of one radio frequency(RF) receiver, one baseband and several system control parts. In the proposed AFC block, both analog and digital modes were designed to complete the AFC process. In analog mode, the analog part sampled and detected the charge pump output tuning voltage, which would give the indicator to digital part to adjust the voltage control oscillator(VCO) capacitor bank. In digital mode, the digital part counted the phase lock loop(PLL) divided clock to judge whether VCO frequency was fast or slow. The analog and digital modes completed the auto frequency calibration function independently by internal switch. By designing a special switching algorithm, the switch of the digital and analog mode could be realized anytime during the lock and unlock detecting process for faster and more stable locking. This chip is fabricated in 0.13 μm RF complementary metal oxide semiconductor(CMOS) process, and the VCO supports the frequency range from 2.7 to 4.0 GHz. Tested 3.96 GHz frequency phase noise is -90 d Bc/Hz@100 k Hz frequency offset and -120 d Bc/Hz@1 MHz frequency offset. By using the analog mode in lock detection and digital mode in unlock detection, tested AFC time is less than 9 μs and the total PLL lock time is less than 19 μs. The SoC acquisition and tracking sensitivity are about-142 d Bm and-155 d Bm, respectively. The area of the proposed PLL is 0.35 mm^2 and the total SoC area is about 9.6 mm^2.展开更多
Channel state information of OFDM-STC system is required for maximum likelihood decoding.A subspace-based semi-blind method was proposed for estimating the channels of OFDM-STC systems.The channels are first estimated...Channel state information of OFDM-STC system is required for maximum likelihood decoding.A subspace-based semi-blind method was proposed for estimating the channels of OFDM-STC systems.The channels are first estimated blindly up to an ambiguity parameter utilizing the nature structure of STC,irrespective of the underlying signal constellations.Furthermore,a method was proposed to resolve the ambiguity by using a few pilot symbols.The simulation results show the proposed semi-blind estimator can achieve higher spectral efficiency and provide improved estimation performance compared to the non-blind estimator.展开更多
Since the lower power requirement of code division multiple access(CDMA) than that of other multiple access, the CDMA technology is suitable to be used in low earth orbit(LEO) satellite communication system whose spac...Since the lower power requirement of code division multiple access(CDMA) than that of other multiple access, the CDMA technology is suitable to be used in low earth orbit(LEO) satellite communication system whose space power is limited due to the small size of satellite. The pilot channel of CDMA technology is very important for earth mobile station(EMS) in LEO system to recover carrier and code, but the power requirement of pilot channel is very higher than that of other channels. In this paper, a power reduction method for pilot channel is proposed. By the new method, the power of pilot channel transmitted from LEO satellite is reduced to a lower level. For improving the signal to noise ratio(SNR) of pilot channel with lower power, coherent integration is employed in EMS at the pre-processing stage. Considering the high dynamic situation of LEO satellite, the long period of time for integration will deteriorate the receiving performance of EMS, therefore, a dynamic compensation module is added to carrier tracking loop against the high dynamic. Meanwhile, the transfer function of the new tracking loop and the condition for steadystate zero error are deduced. Numerical examples are provided to demonstrate effectiveness of the proposed approach.展开更多
The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 ...The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.展开更多
The BEPC RF system has been changed to superconducting cavities during the last four years.In the Summer of 2006,the high power test had been successfully carried.In November,the East RF was put into commis- sioning.T...The BEPC RF system has been changed to superconducting cavities during the last four years.In the Summer of 2006,the high power test had been successfully carried.In November,the East RF was put into commis- sioning.The SRF system above 1.0MV voltage has been reached with the e^+/e^- collision beam over 100mA,and the beam current improved to 2.5GeV/250mA with 100kW beam power.The beam test shows the good matching of the RF parameters with measuring value and theoretic calculation.The commissioning and the high power test will be presented in this paper.展开更多
A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method w...A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(WK2310000098).
文摘A 499.8 MHz SOLEIL-type superconducting cavity was simulated and designed for the first time in this paper.The higher-order mode(HOM)properties of the cavity were investigated.Two kinds of coaxial HOM couplers were designed.Using 4 L-type and 4 T-type HOM couplers,the longitudinal impedance and the transverse impedances were suppressed to below 3 kΩand 30 kΩ/m,respectivly.The HOM damping requirements of Hefei Advanced Light Facility(HALF)were satisfied.This paper conducted an in-depth study on the radio frequency(RF)design,multipacting optimization,and thermal analysis of these coaxial couplers.Simulation results indicated that under operating acceleration voltage,the optimized couplers does not exhibit multiplicating or thermal breakdown phenomena.The cavity has the potential to reach a higher acceleration gradient.
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
基金Project(2011912004)supported by the Major Program of the Economic & Information Commission Program of Guangdong Province,ChinaProjects(2011B010700065,2011A090200106)supported by the Major Program of the Department of Science and Technology of Guangdong Province,China
文摘A 2.7-4.0 GHz dual-mode auto frequency calibration(AFC) fast locking PLL was designed for navigation system on chip(SoC). The SoC was composed of one radio frequency(RF) receiver, one baseband and several system control parts. In the proposed AFC block, both analog and digital modes were designed to complete the AFC process. In analog mode, the analog part sampled and detected the charge pump output tuning voltage, which would give the indicator to digital part to adjust the voltage control oscillator(VCO) capacitor bank. In digital mode, the digital part counted the phase lock loop(PLL) divided clock to judge whether VCO frequency was fast or slow. The analog and digital modes completed the auto frequency calibration function independently by internal switch. By designing a special switching algorithm, the switch of the digital and analog mode could be realized anytime during the lock and unlock detecting process for faster and more stable locking. This chip is fabricated in 0.13 μm RF complementary metal oxide semiconductor(CMOS) process, and the VCO supports the frequency range from 2.7 to 4.0 GHz. Tested 3.96 GHz frequency phase noise is -90 d Bc/Hz@100 k Hz frequency offset and -120 d Bc/Hz@1 MHz frequency offset. By using the analog mode in lock detection and digital mode in unlock detection, tested AFC time is less than 9 μs and the total PLL lock time is less than 19 μs. The SoC acquisition and tracking sensitivity are about-142 d Bm and-155 d Bm, respectively. The area of the proposed PLL is 0.35 mm^2 and the total SoC area is about 9.6 mm^2.
基金The National High Technology Research and Development Program(863Program)(No.2003AA12331007)The National NaturalScience Foundation of China(No.60572157)
文摘Channel state information of OFDM-STC system is required for maximum likelihood decoding.A subspace-based semi-blind method was proposed for estimating the channels of OFDM-STC systems.The channels are first estimated blindly up to an ambiguity parameter utilizing the nature structure of STC,irrespective of the underlying signal constellations.Furthermore,a method was proposed to resolve the ambiguity by using a few pilot symbols.The simulation results show the proposed semi-blind estimator can achieve higher spectral efficiency and provide improved estimation performance compared to the non-blind estimator.
基金supported by the National High Technology Research and Development Program of China (863 Program) (No.2012AA01A502)the National Natural Science Foundation of China (No.61179006)the Science and Technology Support Program of Sichuan Province (No.2014GZX0004)
文摘Since the lower power requirement of code division multiple access(CDMA) than that of other multiple access, the CDMA technology is suitable to be used in low earth orbit(LEO) satellite communication system whose space power is limited due to the small size of satellite. The pilot channel of CDMA technology is very important for earth mobile station(EMS) in LEO system to recover carrier and code, but the power requirement of pilot channel is very higher than that of other channels. In this paper, a power reduction method for pilot channel is proposed. By the new method, the power of pilot channel transmitted from LEO satellite is reduced to a lower level. For improving the signal to noise ratio(SNR) of pilot channel with lower power, coherent integration is employed in EMS at the pre-processing stage. Considering the high dynamic situation of LEO satellite, the long period of time for integration will deteriorate the receiving performance of EMS, therefore, a dynamic compensation module is added to carrier tracking loop against the high dynamic. Meanwhile, the transfer function of the new tracking loop and the condition for steadystate zero error are deduced. Numerical examples are provided to demonstrate effectiveness of the proposed approach.
基金supported by Program for New Century Excellent Talents in University(No.NCET-06-0925)
文摘The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.
文摘The BEPC RF system has been changed to superconducting cavities during the last four years.In the Summer of 2006,the high power test had been successfully carried.In November,the East RF was put into commis- sioning.The SRF system above 1.0MV voltage has been reached with the e^+/e^- collision beam over 100mA,and the beam current improved to 2.5GeV/250mA with 100kW beam power.The beam test shows the good matching of the RF parameters with measuring value and theoretic calculation.The commissioning and the high power test will be presented in this paper.
基金supported by the National Natural Sciences Foundation of China(Grant No.41574029)Youth Innovation Promotion Association CAS(Grant No.2016242)
文摘A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.