Nanoporous BiVO;thin films were deposited using reactive magnetron sputtering in Ar and O;atmosphere, on various substrates, employing pulsed direct-current(DC) power supplies applied to metallic Bi and V targets for ...Nanoporous BiVO;thin films were deposited using reactive magnetron sputtering in Ar and O;atmosphere, on various substrates, employing pulsed direct-current(DC) power supplies applied to metallic Bi and V targets for rapid deposition. The procedure was followed by a post-annealing treatment in air to crystallize the photoactive monoclinic scheelite structure. The influence of total pressure and substrate on the crystal structure, morphology, microstructure, optical and photocatalytic properties of the films was investigated. The crystallization of monoclinic scheelite structure deposited on fused silica substrate starts at 250 ℃ and the films are stable up to 600 ℃. The morphology of the films is rather dense, despite at the high sputtering pressure(>2 Pa), with embedded nanopores. Among the thin films deposited on fused silica, the one deposited at 4.5 Pa exhibits the highest porosity(52%), with the lowest bandgap(2.44 eV) and it shows the highest photocatalytic activity in the degradation of Rhodamine-B(26% after 7 h) under visible light irradiation. The film deposited on the silicon substrate exhibits the highest photoactivity(53% after 7 h). Lack of hypsochromic shift in the UV-Vis temporal absorption spectra shows the dominance of the chromophore cleavage pathway in the photodecomposition.展开更多
Patterned porous silicon (PS) films were synthesised by using bydrogen ion implantation technique and typical electrochemical anodic etching method.The surface morphology and characteristics of the PS films were cha...Patterned porous silicon (PS) films were synthesised by using bydrogen ion implantation technique and typical electrochemical anodic etching method.The surface morphology and characteristics of the PS films were characterized by scanning electron microscopy (SEM),X-ray diffraction(XRD),and atomic force microscopy (AFM).The efficient electron field emission with low turn-on field of about 3.5V/μm was obtained at current density of 0.1μA/cm^2.The electron field emission current density from the patterned PS films reached 1mA/cm^2 under and applied field of about 12.5V/μm.The experimental results show that the patterned PS films are of certain practical significance and are valuable for flat panel displays.展开更多
Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region ...Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region were studied experimentally and theoretically,which revealed that the SERRS enhancement factor was as high as 6 orders.展开更多
Mesoporous CeO2 nanowires(NWs) were synthesized through a facile hydrothermal process by using triblock copolymer F127 as the template.XRD analysis confirmed the cubic phase of the synthesized CeO2 NWs.High-yield one-...Mesoporous CeO2 nanowires(NWs) were synthesized through a facile hydrothermal process by using triblock copolymer F127 as the template.XRD analysis confirmed the cubic phase of the synthesized CeO2 NWs.High-yield one-dimensional NWs with accessible mesopores could be observed from SEM and TEM images,and the surface area of the material was confirmed to be 273 m2 g-1 with pore width distribution of 6.9-13.8 nm.The mesoporous CeO2 NWs could be used as efficient photocatalysts for organic dye degradation under UV light irradiation,which was superior compared with commercial photocatalyst P-25 and commercial CeO2 powders.The NW structure facilitates the recovery of catalyst by sedimentation,leading to the impressive reusability of these mesoporous CeO2 NWs.展开更多
基金the supports of this study by the Iran National Science Foundation (No. 98001285)Pays de Montbéliard Agglomération (France) for the support of this work。
文摘Nanoporous BiVO;thin films were deposited using reactive magnetron sputtering in Ar and O;atmosphere, on various substrates, employing pulsed direct-current(DC) power supplies applied to metallic Bi and V targets for rapid deposition. The procedure was followed by a post-annealing treatment in air to crystallize the photoactive monoclinic scheelite structure. The influence of total pressure and substrate on the crystal structure, morphology, microstructure, optical and photocatalytic properties of the films was investigated. The crystallization of monoclinic scheelite structure deposited on fused silica substrate starts at 250 ℃ and the films are stable up to 600 ℃. The morphology of the films is rather dense, despite at the high sputtering pressure(>2 Pa), with embedded nanopores. Among the thin films deposited on fused silica, the one deposited at 4.5 Pa exhibits the highest porosity(52%), with the lowest bandgap(2.44 eV) and it shows the highest photocatalytic activity in the degradation of Rhodamine-B(26% after 7 h) under visible light irradiation. The film deposited on the silicon substrate exhibits the highest photoactivity(53% after 7 h). Lack of hypsochromic shift in the UV-Vis temporal absorption spectra shows the dominance of the chromophore cleavage pathway in the photodecomposition.
基金National Natural Science Foundation of China (60476004) Foundation of Graduate Students of East ChinaNormal University(ECNU2005) Foundation of State Key Laboratory of Advanced Technology for MaterialsSynthesis and Processing( Wuhan University of Tech
文摘Patterned porous silicon (PS) films were synthesised by using bydrogen ion implantation technique and typical electrochemical anodic etching method.The surface morphology and characteristics of the PS films were characterized by scanning electron microscopy (SEM),X-ray diffraction(XRD),and atomic force microscopy (AFM).The efficient electron field emission with low turn-on field of about 3.5V/μm was obtained at current density of 0.1μA/cm^2.The electron field emission current density from the patterned PS films reached 1mA/cm^2 under and applied field of about 12.5V/μm.The experimental results show that the patterned PS films are of certain practical significance and are valuable for flat panel displays.
基金supported by the National Basic Research Program of China(Grant No.2012CB626801)the National Natural Science Foundation of China(Grant No.11274057)+5 种基金the Program for New Century Excellent Talents in University(Grant No.NCET-13-0702)the Science and Technology Project of Liaoning Province(Grant No.2012222009)the Fundamental Research Funds for the Central Universities(Grant No.DC12010117)the Program for Liaoning Excellent Talents in University(LNET)(Grant No.LJQ2012112)the Science and Technique Foundation of Dalian(Grant Nos.2012J21DW016 and 2013A14GX040)the Science and Technique Foundation of Jinzhou New District(Grant No.2012-A1-051)
文摘Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region were studied experimentally and theoretically,which revealed that the SERRS enhancement factor was as high as 6 orders.
基金supported by the Engineering and Technology Research Center of Food Preservation,Processing and Safety Control of Liaoning Province,Food Safety Key Lab of Liaoning Province (LNSAKF2011027)Key Laboratory Project of Department of Education of LiaoningProvince (2009s004)
文摘Mesoporous CeO2 nanowires(NWs) were synthesized through a facile hydrothermal process by using triblock copolymer F127 as the template.XRD analysis confirmed the cubic phase of the synthesized CeO2 NWs.High-yield one-dimensional NWs with accessible mesopores could be observed from SEM and TEM images,and the surface area of the material was confirmed to be 273 m2 g-1 with pore width distribution of 6.9-13.8 nm.The mesoporous CeO2 NWs could be used as efficient photocatalysts for organic dye degradation under UV light irradiation,which was superior compared with commercial photocatalyst P-25 and commercial CeO2 powders.The NW structure facilitates the recovery of catalyst by sedimentation,leading to the impressive reusability of these mesoporous CeO2 NWs.