The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to s...The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.展开更多
Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of j...Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of jet flow structures with impinging distance is characterized using the technique of particle image velocimetry (PIV). Correspondingly, the distributions of wall pressure and heat transfer on the plate are measured. At sufficiently large impinging distances, without swirling flow, the obtained flow and wall pressure/heat transfer data are consistent with the classical observation for a conventional annular impinging jet, showing the transition from annular impinging jet flow to single circular impinging jet-like flow. In contrast, no such transition occurs in the presence of flow turning by short guide vanes. At short and intermediate impinging distances, flow turning causes more non-uniform distributions of wall pressure and heat transfer on the target plate and the local heat transfer rates higher than those of the conventional annular jet. This is attributed to the vortical flow structures shed and convected downstream from the short guide vanes. In sharp contrast, at large impinging distances, the larger momentum loss due to flow turning results in lower heat transfer rates on the plate.展开更多
The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging t...The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.展开更多
文摘The engineering analysis techniques used for the GTE (gas turbine engines) design are presented, the physical effects, which impact is not currently taken into account are described, further research directions to strengthen core design competencies are identified, the requirements for computing power are formulated. Internal cooling techniques for gas turbine blades have been studied for several decades. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine vane and blades within acceptable limits in this harsh environment.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB610305)the National "111" Project of China (Grant No. B06024)the National Natural Science Foundation of China (Grant Nos. 10825210, 11072188)
文摘Annular jets impinging on a uniformly heated flat plate with or without swirling flow by short guide vanes are experimentally characterized. With the Reynolds number fixed at a relatively low value, the variation of jet flow structures with impinging distance is characterized using the technique of particle image velocimetry (PIV). Correspondingly, the distributions of wall pressure and heat transfer on the plate are measured. At sufficiently large impinging distances, without swirling flow, the obtained flow and wall pressure/heat transfer data are consistent with the classical observation for a conventional annular impinging jet, showing the transition from annular impinging jet flow to single circular impinging jet-like flow. In contrast, no such transition occurs in the presence of flow turning by short guide vanes. At short and intermediate impinging distances, flow turning causes more non-uniform distributions of wall pressure and heat transfer on the target plate and the local heat transfer rates higher than those of the conventional annular jet. This is attributed to the vortical flow structures shed and convected downstream from the short guide vanes. In sharp contrast, at large impinging distances, the larger momentum loss due to flow turning results in lower heat transfer rates on the plate.
基金The support of the Italian Ministry of the University and Scientific Research(MIUR)under the PRIN project number 2007R3AXLH is greatly acknowledged
文摘The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.