Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging t...The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.展开更多
As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bu...As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bucket unsteadily separates a free jet into two branches in both space and time:the impinging branch landing on the relevant bucket surface,and the flow-off branch separated by the cutout toward the preceding bucket.In order to investigate the unsteady jet separation by the cutout three-dimensionally,a semicircular free jet was discretized into 641 nodes of boundary-fitted grids.The position P of impinging jet branch landing on the bucket surface was acquired with the relative velocity W and the water depth D at each node.The trailing edge surface of the flow-off jet branch was simultaneously computed unsteadily.The complicate unsteady interaction of the bucket cutout with the branched free jets was clarified visually with the 3D view of illustrations in order to research the unsteady hydraulic performance of Pelton turbines in space and time.展开更多
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金The support of the Italian Ministry of the University and Scientific Research(MIUR)under the PRIN project number 2007R3AXLH is greatly acknowledged
文摘The present paper focuses on the analysis of a synthetic jet device (with a zero net massflow rate) on a separated boundary layer. Separation has been obtained on a flat plate installed within a converging-diverging test section specifically designed to attain a local velocity distribution typical of a high-lift LPT blade. Both experimental and numerical investigations have been carried out. Unsteady RANS results have been compared with experiments in terms of time-averaged velocity and turbulence intensity distributions. Two different Reynolds number cases have been investigated, namely Re = 200,000 and Re = 70,000, which characterize low-pressure turbine operating conditions during take-off/landing and cruise. A range of synthetic jet aerodynamic parameters (Strouhal number and blowing ratio) has been tested in order to analyze the features of control-separated boundary layer interaction for the aforementioned Reynolds numbers.
基金supported by the National Natural Science Foundation of China(Grant No.50379015)the Major Science and Technology Projects in Zhejiang province(Grant No.2008C11057)
文摘As a part of boundaries for a free curved surface of a Pelton bucket,the cutout is indispensable to secure the smooth entrance of the unsteady inflow of water jet into the rotating bucket.The cutout of the rotating bucket unsteadily separates a free jet into two branches in both space and time:the impinging branch landing on the relevant bucket surface,and the flow-off branch separated by the cutout toward the preceding bucket.In order to investigate the unsteady jet separation by the cutout three-dimensionally,a semicircular free jet was discretized into 641 nodes of boundary-fitted grids.The position P of impinging jet branch landing on the bucket surface was acquired with the relative velocity W and the water depth D at each node.The trailing edge surface of the flow-off jet branch was simultaneously computed unsteadily.The complicate unsteady interaction of the bucket cutout with the branched free jets was clarified visually with the 3D view of illustrations in order to research the unsteady hydraulic performance of Pelton turbines in space and time.