Effects of 60Co-γ ray radicidation on instant tea were studied through contaminant microbe assay,absorbed dose measurement and analysis of principal components of instant tea.The minimum effective dose of 4.0kGy and ...Effects of 60Co-γ ray radicidation on instant tea were studied through contaminant microbe assay,absorbed dose measurement and analysis of principal components of instant tea.The minimum effective dose of 4.0kGy and maximum tolerance dose of 8.0KGy were proposed.展开更多
Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of ...Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350-410 S/cm (whilst retaining 〉96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.展开更多
文摘Effects of 60Co-γ ray radicidation on instant tea were studied through contaminant microbe assay,absorbed dose measurement and analysis of principal components of instant tea.The minimum effective dose of 4.0kGy and maximum tolerance dose of 8.0KGy were proposed.
基金This work was supported by the National Natural Science Foundation of China (Grants Nos. 50802003, 20973013, 51072004, 50821061, and 20973006) and Ministry of Science and Technology of the people's Republic of China (Grants Nos. 2007CB936203, 2006CBP32602, and 2009CB929403).
文摘Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350-410 S/cm (whilst retaining 〉96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.