随着无线传感网、移动计算设备和因特网的快速发展,无线定位技术日益受到关注。本文在传统的三边定位方法上,提出更近邻居质心定位方法;但由于室内环境的复杂性导致RSSI(receive signal strength indicator)定位误差较大,本文又进一步...随着无线传感网、移动计算设备和因特网的快速发展,无线定位技术日益受到关注。本文在传统的三边定位方法上,提出更近邻居质心定位方法;但由于室内环境的复杂性导致RSSI(receive signal strength indicator)定位误差较大,本文又进一步提出离线采集参考节点的信号强度向量,根据未知节点与参考节点的RSSI均方差值作为加权因子对更近邻居定位方法的结果进行迭代修正。最后,详尽地给出了实验数据,证明了该算法在提高定位精度上确实有效。展开更多
Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are ver...Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are very popular in this area since their cost is very low. In such technologies, each tag acts as the transmitter and the Radio Signal Strength Indicator(RSSI) information is measured from the readers. However, RSSI information suffers severely from the multi- path phenomenon. As a result, if in a very large area, the localization accuracy will be affected seriously. In order to solve this problem, we introduce Wireless Sensor Networks(WSNs) with only a few nodes, each of which acts as both transmitter and receiver. In such networks, the change of signal strength(referred as dynamic of RSSI) is leveraged to select a cluster of reference tags as candidates. Then the fi nal target location is estimated by using the RSSI relationships between the target tag and candidate reference tags. Thus, the localization accuracy and scalability are able to be improved. We proposed two algorithms, SA-LANDMARC, and COCKTAIL. Experiments show that the localization accuracy of the two algorithms can reach 0.7m and 0.45 m, respectively. Compared to most traditional Radio Frequency(RF)-based approaches, the localization accuracy is improved at least 50%.展开更多
Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of p...Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly def ined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in diffi cult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an effi cient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities.展开更多
On the basis of the survey of underground noise in Jinggezhuang and Donghuantuo mines, Kailuan Group, noise radiation intensity, noise propagation properties and noise frequency-spectrum characteristics of underground...On the basis of the survey of underground noise in Jinggezhuang and Donghuantuo mines, Kailuan Group, noise radiation intensity, noise propagation properties and noise frequency-spectrum characteristics of underground equipment were studied at different work conditions. The result indicates that the noise source intensity surpasses the noise limit requirement of 85 dBA completely. Nearly 70% noise sources exceed the noise limit of 90 dBA, and some are over 100 dBA. Noise attenua- tion in semi-free field environment on the ground is significantly different from underground far-field environment of noise source in coal mines. Noise of these regions, where staffs are long and highly concentrated, exceeds 85 dBA, the basic noise limit. The noise frequency-spectrum presents the wideband characteristics. Especially in the main frequency of the language communication 500, 1 000 and 2 000 Hz, the octave band of noise performs obviously.展开更多
Using observations from the EUV Imaging Spectrometer (EIS) onboard Hinode, we exam the plasma dynamics around the edge of the active region 10977, possibly associated with the source of nascent slow/intermediate sol...Using observations from the EUV Imaging Spectrometer (EIS) onboard Hinode, we exam the plasma dynamics around the edge of the active region 10977, possibly associated with the source of nascent slow/intermediate solar wind. The correlation between the temporal profiles of the radiation intensity and Doppler shift for each emission line are analyzed. And three small regions with positive correlations for all the five emission lines are selected for a detailed analysis. In this work, Doppler blue (red) shift is defined as negative (positive). We find that in Region 1, the radiation intensity (Doppler velocity) decreases by about 15% (about 3 km s-X), and logarithmical differential emission measures (lg(DEMs)) reduces by about 0.06-0.10% at all temperatures, called "weak dimming", during a 30-min interval. In Region 2 and Region 3, however, the radiation intensity (Doppler velocity) increases by about 15% (about 3 km s-l), and lg(DEMs) increases by about 0.06%~0.10% at all tempera- tures, called "weak brightening". Such weak dimming (weak brightening) could reflect a slow draining (replenishing) of plas- ma in the solar wind flux tubes, possibly due to a larger (smaller) outflow flux at high altitude than at low altitude. These sug- gest that the plasma supply could be intermittent with an alternation of draining and replenishing, for which the underlying physical process is yet unknown, at the source region of slow/intermediate solar wind.展开更多
The frequency distribution of different ingredients in-ray spectra,e.g.,photo-peak,fluctuations of counts and Compton region,is separately analyzed.After wavelet transform of-ray spectra,the wavelet coefficients of a ...The frequency distribution of different ingredients in-ray spectra,e.g.,photo-peak,fluctuations of counts and Compton region,is separately analyzed.After wavelet transform of-ray spectra,the wavelet coefficients of a photo-peak increase with transforming scales and these coefficients show direct proportion with intensity of peak at determinate scale.A novel algorithm based on wavelet transform is proposed and studied.The results indicate that most of the photo-peaks in multi-spectra can be determined accurately,the-rays energy and intensity of the peak can also be determined.This method has the prospect of being applied in on-line multi-spectra analysis in such fields as radioprotection and nuclear safety monitoring.展开更多
文摘随着无线传感网、移动计算设备和因特网的快速发展,无线定位技术日益受到关注。本文在传统的三边定位方法上,提出更近邻居质心定位方法;但由于室内环境的复杂性导致RSSI(receive signal strength indicator)定位误差较大,本文又进一步提出离线采集参考节点的信号强度向量,根据未知节点与参考节点的RSSI均方差值作为加权因子对更近邻居定位方法的结果进行迭代修正。最后,详尽地给出了实验数据,证明了该算法在提高定位精度上确实有效。
基金supported in part by China NSFC Grant 61202377 and 61170076the Guangdong Natural Science Foundation under Grant 2014A030313553+2 种基金the China National High Technology Research and Development Program 863, under Grant 2015AA015305Joint Funds of the National Natural Science Foundation of China under Grant U1301252Guangdong Province Key Laboratory Project under grant 2012A061400024
文摘Indoor localization is very critical for medical care applications, e.g., the patient localization or tracking inside the building of the hospital. Traditional Radio Frequency Identification(RFID) technologies are very popular in this area since their cost is very low. In such technologies, each tag acts as the transmitter and the Radio Signal Strength Indicator(RSSI) information is measured from the readers. However, RSSI information suffers severely from the multi- path phenomenon. As a result, if in a very large area, the localization accuracy will be affected seriously. In order to solve this problem, we introduce Wireless Sensor Networks(WSNs) with only a few nodes, each of which acts as both transmitter and receiver. In such networks, the change of signal strength(referred as dynamic of RSSI) is leveraged to select a cluster of reference tags as candidates. Then the fi nal target location is estimated by using the RSSI relationships between the target tag and candidate reference tags. Thus, the localization accuracy and scalability are able to be improved. We proposed two algorithms, SA-LANDMARC, and COCKTAIL. Experiments show that the localization accuracy of the two algorithms can reach 0.7m and 0.45 m, respectively. Compared to most traditional Radio Frequency(RF)-based approaches, the localization accuracy is improved at least 50%.
文摘Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly def ined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in diffi cult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an effi cient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities.
基金Supported by the National Natural Science Foundation of China (50974061) the Natural Science Foundation of Hebei Province (E2009001420)
文摘On the basis of the survey of underground noise in Jinggezhuang and Donghuantuo mines, Kailuan Group, noise radiation intensity, noise propagation properties and noise frequency-spectrum characteristics of underground equipment were studied at different work conditions. The result indicates that the noise source intensity surpasses the noise limit requirement of 85 dBA completely. Nearly 70% noise sources exceed the noise limit of 90 dBA, and some are over 100 dBA. Noise attenua- tion in semi-free field environment on the ground is significantly different from underground far-field environment of noise source in coal mines. Noise of these regions, where staffs are long and highly concentrated, exceeds 85 dBA, the basic noise limit. The noise frequency-spectrum presents the wideband characteristics. Especially in the main frequency of the language communication 500, 1 000 and 2 000 Hz, the octave band of noise performs obviously.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174148,41222032,40931055,41231069,41274172)supported by a foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD)(Grant No.201128)
文摘Using observations from the EUV Imaging Spectrometer (EIS) onboard Hinode, we exam the plasma dynamics around the edge of the active region 10977, possibly associated with the source of nascent slow/intermediate solar wind. The correlation between the temporal profiles of the radiation intensity and Doppler shift for each emission line are analyzed. And three small regions with positive correlations for all the five emission lines are selected for a detailed analysis. In this work, Doppler blue (red) shift is defined as negative (positive). We find that in Region 1, the radiation intensity (Doppler velocity) decreases by about 15% (about 3 km s-X), and logarithmical differential emission measures (lg(DEMs)) reduces by about 0.06-0.10% at all temperatures, called "weak dimming", during a 30-min interval. In Region 2 and Region 3, however, the radiation intensity (Doppler velocity) increases by about 15% (about 3 km s-l), and lg(DEMs) increases by about 0.06%~0.10% at all tempera- tures, called "weak brightening". Such weak dimming (weak brightening) could reflect a slow draining (replenishing) of plas- ma in the solar wind flux tubes, possibly due to a larger (smaller) outflow flux at high altitude than at low altitude. These sug- gest that the plasma supply could be intermittent with an alternation of draining and replenishing, for which the underlying physical process is yet unknown, at the source region of slow/intermediate solar wind.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.13QN50)the National Natural Science Foundation of China (Grant No.11275271)
文摘The frequency distribution of different ingredients in-ray spectra,e.g.,photo-peak,fluctuations of counts and Compton region,is separately analyzed.After wavelet transform of-ray spectra,the wavelet coefficients of a photo-peak increase with transforming scales and these coefficients show direct proportion with intensity of peak at determinate scale.A novel algorithm based on wavelet transform is proposed and studied.The results indicate that most of the photo-peaks in multi-spectra can be determined accurately,the-rays energy and intensity of the peak can also be determined.This method has the prospect of being applied in on-line multi-spectra analysis in such fields as radioprotection and nuclear safety monitoring.