Ni‐CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni‐CeO2 catalysts, a pr...Ni‐CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni‐CeO2 catalysts, a precursor containing Ni(~5‐μm diameter) and CeO2(~200‐nm diameter)powders were heated simultaneously using an RF plasma at a power level of ~52 kVA and a powder feeding rate of ~120 g/h. From the X‐ray diffraction data and transmission electron microscopy images, the precursor formed into high crystalline CeO2 supports with nanosized Ni particles( 50‐nm diameter) on their surfaces. The catalytic performance was evaluated under atmospheric pressure at 500 °C and a CH4:O2 molar ratio of 2:1 with Ar diluent. Although the Ni content was high(~50 mol%), the experimental results reveal a methane conversion rate of 70%, selectivities of CO and H2 greater than 90% and slight carbon coking during an on‐stream test at 550 °C for 24 h.However, at 750 °C, the on‐stream test revealed the formation of filament‐like carbons with an increased methane conversion rate over 90%.展开更多
基金supported by Renewable Energy Technologies Development Program(No.2008NFC02J0200002009)Technology Innovation Program(No.10048910)funded by the Ministry of Trade,Industry and Energy(MI,Korea)
文摘Ni‐CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni‐CeO2 catalysts, a precursor containing Ni(~5‐μm diameter) and CeO2(~200‐nm diameter)powders were heated simultaneously using an RF plasma at a power level of ~52 kVA and a powder feeding rate of ~120 g/h. From the X‐ray diffraction data and transmission electron microscopy images, the precursor formed into high crystalline CeO2 supports with nanosized Ni particles( 50‐nm diameter) on their surfaces. The catalytic performance was evaluated under atmospheric pressure at 500 °C and a CH4:O2 molar ratio of 2:1 with Ar diluent. Although the Ni content was high(~50 mol%), the experimental results reveal a methane conversion rate of 70%, selectivities of CO and H2 greater than 90% and slight carbon coking during an on‐stream test at 550 °C for 24 h.However, at 750 °C, the on‐stream test revealed the formation of filament‐like carbons with an increased methane conversion rate over 90%.