Accurate prediction of magmatic intrusion into a coal bed is illustrated using the method of seismic spectral decomposition.The characteristics of coal seismic reflections are first analyzed and the effect of variable...Accurate prediction of magmatic intrusion into a coal bed is illustrated using the method of seismic spectral decomposition.The characteristics of coal seismic reflections are first analyzed and the effect of variable time windows and domain frequencies on the spectral decomposition are examined.The higher domain frequency of coal bed reflections using the narrower STFT time window,or the smaller ST scale factor,are acceptable.When magmatic rock intrudes from the bottom of the coal bed the domain frequency of the reflections is decreased slightly,the frequency bandwidth is narrowed correspondingly,and the response from spectral decomposition is significantly reduced.Intrusion by a very thin magmatic rock gives a spectral decomposition response that is just slightly less than what is seen from a normal coal bed.Results from an actual mining area were used to validate the method.Predicting the boundary of magmatic intrusions with the method discussed herein was highly accurate and has been validated by observations from underground mining.展开更多
Recent research progresses in Multi-Beam Klystron (MBK) in IECAS are briefly introduced in the letter. The S-band MBKs of IECAS have peak power of 120-250 kW, average power of 4-9 kW, efficiency of 35-45%, gain of 41-...Recent research progresses in Multi-Beam Klystron (MBK) in IECAS are briefly introduced in the letter. The S-band MBKs of IECAS have peak power of 120-250 kW, average power of 4-9 kW, efficiency of 35-45%, gain of 41-46 dB, beam voltage of 15-19 kV, and weight of 40-45 kg. Some key technical problems of MBK are also described and discussed. Among them,improving the design of MBK to obtain the required bandwidth, raising beam transmission to increase average power, eliminating oscillation and spray spectrum, overcoming window breakdown caused by magic mode, reducing breakdown times of electrongun, are most important things for the practical MBK. Besides, further research work in MBK in IECAS is commented.展开更多
基金provided by the National Natural Science Foundation of China (Nos. 40804026 and 40874054)the Postdoctoral Science Foundation of China (No. 20100471003)+2 种基金the Postdoctoral Science Foundation of Jiangsu Province (No.1002023B)the Open Projects of State Key Laboratory of Coal Resources and Mine Safety (No. 10KF05)the Youth Foundation of CUMT,are gratefully acknowledged
文摘Accurate prediction of magmatic intrusion into a coal bed is illustrated using the method of seismic spectral decomposition.The characteristics of coal seismic reflections are first analyzed and the effect of variable time windows and domain frequencies on the spectral decomposition are examined.The higher domain frequency of coal bed reflections using the narrower STFT time window,or the smaller ST scale factor,are acceptable.When magmatic rock intrudes from the bottom of the coal bed the domain frequency of the reflections is decreased slightly,the frequency bandwidth is narrowed correspondingly,and the response from spectral decomposition is significantly reduced.Intrusion by a very thin magmatic rock gives a spectral decomposition response that is just slightly less than what is seen from a normal coal bed.Results from an actual mining area were used to validate the method.Predicting the boundary of magmatic intrusions with the method discussed herein was highly accurate and has been validated by observations from underground mining.
文摘Recent research progresses in Multi-Beam Klystron (MBK) in IECAS are briefly introduced in the letter. The S-band MBKs of IECAS have peak power of 120-250 kW, average power of 4-9 kW, efficiency of 35-45%, gain of 41-46 dB, beam voltage of 15-19 kV, and weight of 40-45 kg. Some key technical problems of MBK are also described and discussed. Among them,improving the design of MBK to obtain the required bandwidth, raising beam transmission to increase average power, eliminating oscillation and spray spectrum, overcoming window breakdown caused by magic mode, reducing breakdown times of electrongun, are most important things for the practical MBK. Besides, further research work in MBK in IECAS is commented.