期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
隧道方案在小交通量等外级公路设计中的适用性研究
1
作者 唐中强 《水电站设计》 2020年第2期51-55,共5页
《水电工程移民专业项目规划设计规范》交通运输工程章节未对隧道标准进行确定,若参照交通运输行业隧道执行标准,隧道等级与道路等级不匹配导致隧道投资占比较大,故水电工程移民复建道路专业平面设计均采用明线。本文拟通过对涉及的各... 《水电工程移民专业项目规划设计规范》交通运输工程章节未对隧道标准进行确定,若参照交通运输行业隧道执行标准,隧道等级与道路等级不匹配导致隧道投资占比较大,故水电工程移民复建道路专业平面设计均采用明线。本文拟通过对涉及的各行业技术标准进行分析,探讨适当降低隧道建筑限界宽度以减小公路隧道净空的可能性。通过对大岗山复建道路设计方案的比选,笔者认为在高山峡谷地段的道路设计中,采用隧道方案可行且具有推广价值。 展开更多
关键词 高山峡谷地段 小交通流量 等外级公路 隧道
下载PDF
Combination forecast for urban rail transit passenger flow based on fuzzy information granulation and CPSO-LS-SVM 被引量:3
2
作者 TANG Min-an ZHANG Kai LIU Xing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期32-41,共10页
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu... In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future. 展开更多
关键词 urban rail transit passenger flow forecast least squares support vector machine(LS-SVM) fuzzy information granulation chaos particle swarm optimization(CPSO)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部