Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ...Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting.展开更多
Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimenta...Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II.展开更多
In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate ...In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity.展开更多
Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flo...Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.展开更多
Rifapentine, an important antibiotic, was crystallized from methanol solvent in the form of its methanol solvate. The crystal structure of rifapentine methanol solvate belongs to monoclinic, space group P21, with the ...Rifapentine, an important antibiotic, was crystallized from methanol solvent in the form of its methanol solvate. The crystal structure of rifapentine methanol solvate belongs to monoclinic, space group P21, with the unit cell parameters of a = 1.2278(3) nm, b = 1.9768(4) rim, c = 1.2473(3) nm, Z= 2, and β = 112.35(3). The parallelepiped.morphology was also predicted by Materials Studio simulation program.. The influence of intermolecular in-teraction was taken into account in the attachment energy model. The crystal shape fits the calculated morphology well, which was performed on the potential energy minimized model using a generic DREIDING 2.21 force fieldand developed minimization protocol with derived'partial charges.展开更多
For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a va...For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.展开更多
Purpose: The present study investigated the effects of 16 weeks of small-volume, small-sided soccer training soccer group (SG, n = 13) and oscillating whole-body vibration training vibration group (VG, n = 17) on...Purpose: The present study investigated the effects of 16 weeks of small-volume, small-sided soccer training soccer group (SG, n = 13) and oscillating whole-body vibration training vibration group (VG, n = 17) on body composition, aerobic fitness, and muscle PCr kinetics in healthy inactive premenopausal women in comparison with an inactive control group (CO, n = 14). Methods: Training for SG and VG consisted of twice-weekly 15-min sessions with average heart rates (HRs) of ~ 155 and 90 bpm respectively. Pre- and post-measurements of body composition (DXA), phosphocreatine (PCr) on- and off-kinetics, and HR measurements during stand- ardised submaximal exercise were performed. Results: After 16 weeks of training in SG, fat percentage was lowered (p = 0.03) by 1.7%±2.4% from 37.5% ± 6.9% to 35.8% ± 6.2% and the PCr decrease in the quadriceps during knee-extension ramp exercise was attenuated (4% ± 8%, p = 0.04), with no changes in VG or CO (time- group effect: p=0.03 and p = 0.03). Submaximal exercise HR was also reduced in SG after 16 weeks of training (6%± 5% of HRmax, p = 0.01). Conclusion: Short duration soccer training for 16 weeks appears to be sufficient to induce favourable changes in body composition and indicators of aerobic fitness and muscle oxidative capacity in untrained premenopausal women.展开更多
Inhalation of 222Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about l 0 percent of the...Inhalation of 222Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about l 0 percent of the total activity (attached and ultrafine), but is considered to yield about 50 percent of the total radiation dose. Therefore, measurements of ultrafine fraction are essential for the estimation of radiation dose. The current study presents measured data on the total equilibrium equivalent concentration (EEC) and ultrafine equilibrium equivalent concentration (EECUn), ultrafine fraction (fb), attached and unattached activity size distributions of radon progeny in the low ventilated rooms at Minia University, Minia city, Egypt. A screen diffusion battery was used for collection the ultrafine fraction and measuring the total activity concentration of radon progeny. The attached activity size distribution of 214pb is determined by using a low pressure cascade impactor. The EEC of radon progeny varied between 1.3 and 18.9 Bq/m3 with a mean value of 5.2 ± 0.48 Bq/m2. The mean activity thermodynamic diameter (AMTD) ofultrafine of radon progeny was determined to be 1.26 nm with relative mean geometric standard deviations (GSD) of 1.3. The ultrafine fraction of radon progeny, fb, has a range 0.01 to 0.21 with an average of 0.08 ± 0.03. A relative mean GSD of 2.7 was determined for attached 2Lapb at a mean active median aerodynamic diameter (AMD) of 350 nm. Based on the above experimental results, the deposition fractions have been evaluated in each air way generation through the human lung by applying a lung deposition model. The bronchial deposition efficiencies of particles in the size range of attached radon progeny were found to be lower than those of ultrafine progeny. The effect of radon progeny deposition by adult male has been also studied for various levels of physical exertion. The dose conversion factor has been discussed as a function of fb.展开更多
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProject(202203a07020011)supported by the Major Science and Technology Projects of Anhui Province,China+4 种基金Project(T2021137)supported by the National Talent Project,ChinaProject(T000508)supported by the Leading Talent Project of the Special Support Plan of Anhui Province,ChinaProject(GXXT-2021-075)supported by the University Synergy Innovation Program of Anhui Province,ChinaProject(2022AH010053)supported by the Excellent Scientific Research and Innovation Team of Universities in Anhui Province,ChinaProject(2022CX1004)supported by the Anhui University of Science and Technology Postgraduate Innovation Fund Project,China。
文摘Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting.
基金Project(51306198)supported by the National Natural Science Foundation of China
文摘Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II.
基金Supported by Ningbo Natural Science Foundation (No. 2006A610016)Foundation of Ministry of Education for Returned Overseas Students & Scholars (SRF for ROCS, SEM. No. 2006699)
文摘In granule processing industries, acquisition of particle size and shape parameters is a common procedure, and volumetric measurement is of great importance in dealing with particle sizing and gradation. To eradicate the major drawbacks with manual gauge, this paper proposes an optical approach using Back Propagation (BP) neural network to estimate the particle volume based on the two-Dimensional (2D) image information. To achieve the better network efficiency and structure simplicity, Principal Component Analysis (PCA) is adopted to reduce the dimensions of network inputs To overcome the shortcomings of generic BP network for being slow to converge and vulnerable to being trapped in local minimum, Levenberg-Marquardt (LM) algorithm is applied to achieve a higher speed and a lower error rate. The real particle data is utilized in training and testing the presented network. The experimental result suggests that the proposed neural network is capable of estimating aggregate volume with satisfactory precision and superior to the generic BP network in terms of perforxnance capacity.
文摘Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.
基金Supported by Open Fund of Mineral Resources Chemistry Key Laboratory of Scihuan Higher Education Institutions
文摘Rifapentine, an important antibiotic, was crystallized from methanol solvent in the form of its methanol solvate. The crystal structure of rifapentine methanol solvate belongs to monoclinic, space group P21, with the unit cell parameters of a = 1.2278(3) nm, b = 1.9768(4) rim, c = 1.2473(3) nm, Z= 2, and β = 112.35(3). The parallelepiped.morphology was also predicted by Materials Studio simulation program.. The influence of intermolecular in-teraction was taken into account in the attachment energy model. The crystal shape fits the calculated morphology well, which was performed on the potential energy minimized model using a generic DREIDING 2.21 force fieldand developed minimization protocol with derived'partial charges.
基金Project (2012AA053001) supported by High-tech Research and Development Program of China
文摘For efficient utilization of a limited geothermal resource in practical projects,the cycle parameters were comprehensively analyzed by combining with the heat transfer performance of the plate heat exchanger,with a variation of flowrate of R245 fa.The influence of working fluid flowrate on a 500 W ORC system was investigated.Adjusting the working fluid flowrate to an optimal value results in the most efficient heat transfer and hence the optimal heat transfer parameters of the plate heat exchanger can be determined.Therefore,for the ORC systems,optimal working fluid flowrate should be controlled.Using different temperature hot water as the heat source,it is found that the optimal flowrate increases by 6-10 L/h with 5 ℃ increment of hot water inlet temperature.During experiment,lower degree of superheat of the working fluid at the outlet the plate heat exchanger may lead to unstable power generation.It is considered that the plate heat exchanger has a compact construction which makes its bulk so small that liquid mixture causes the unstable power generation.To avoid this phenomenon,the flow area of plate heat exchanger should be larger than the designed one.Alternatively,installing a small shell and tube heat exchanger between the outlet of plate heat exchanger and the inlet of expander can be another solution.
基金FIFA-Medical Assessments and Research Centre(F-MARC) and Nordea-fonden supported the study(No.1-ST-P-$$$-$$$-036-JZ-F1-05858)
文摘Purpose: The present study investigated the effects of 16 weeks of small-volume, small-sided soccer training soccer group (SG, n = 13) and oscillating whole-body vibration training vibration group (VG, n = 17) on body composition, aerobic fitness, and muscle PCr kinetics in healthy inactive premenopausal women in comparison with an inactive control group (CO, n = 14). Methods: Training for SG and VG consisted of twice-weekly 15-min sessions with average heart rates (HRs) of ~ 155 and 90 bpm respectively. Pre- and post-measurements of body composition (DXA), phosphocreatine (PCr) on- and off-kinetics, and HR measurements during stand- ardised submaximal exercise were performed. Results: After 16 weeks of training in SG, fat percentage was lowered (p = 0.03) by 1.7%±2.4% from 37.5% ± 6.9% to 35.8% ± 6.2% and the PCr decrease in the quadriceps during knee-extension ramp exercise was attenuated (4% ± 8%, p = 0.04), with no changes in VG or CO (time- group effect: p=0.03 and p = 0.03). Submaximal exercise HR was also reduced in SG after 16 weeks of training (6%± 5% of HRmax, p = 0.01). Conclusion: Short duration soccer training for 16 weeks appears to be sufficient to induce favourable changes in body composition and indicators of aerobic fitness and muscle oxidative capacity in untrained premenopausal women.
文摘Inhalation of 222Rn progeny in the domestic environment contributes the greatest fraction of the natural radiation exposure to the public. The ultrafine activity of these progeny amounts up to about l 0 percent of the total activity (attached and ultrafine), but is considered to yield about 50 percent of the total radiation dose. Therefore, measurements of ultrafine fraction are essential for the estimation of radiation dose. The current study presents measured data on the total equilibrium equivalent concentration (EEC) and ultrafine equilibrium equivalent concentration (EECUn), ultrafine fraction (fb), attached and unattached activity size distributions of radon progeny in the low ventilated rooms at Minia University, Minia city, Egypt. A screen diffusion battery was used for collection the ultrafine fraction and measuring the total activity concentration of radon progeny. The attached activity size distribution of 214pb is determined by using a low pressure cascade impactor. The EEC of radon progeny varied between 1.3 and 18.9 Bq/m3 with a mean value of 5.2 ± 0.48 Bq/m2. The mean activity thermodynamic diameter (AMTD) ofultrafine of radon progeny was determined to be 1.26 nm with relative mean geometric standard deviations (GSD) of 1.3. The ultrafine fraction of radon progeny, fb, has a range 0.01 to 0.21 with an average of 0.08 ± 0.03. A relative mean GSD of 2.7 was determined for attached 2Lapb at a mean active median aerodynamic diameter (AMD) of 350 nm. Based on the above experimental results, the deposition fractions have been evaluated in each air way generation through the human lung by applying a lung deposition model. The bronchial deposition efficiencies of particles in the size range of attached radon progeny were found to be lower than those of ultrafine progeny. The effect of radon progeny deposition by adult male has been also studied for various levels of physical exertion. The dose conversion factor has been discussed as a function of fb.