Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of t...Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of the application of these Wavelets is their capacity to analyze the signal position in different occasions and places. However, in sites with high frequencies its resolution becomes much more difficult. Wavelet packet transform is a more advanced form of continuous wavelets and can make a perfect level by level resolution for each signal. Although very few studies have been done in the field. In order to do this, in the present study, f^st there was an attempt to do a modal analysis on the structure by the ANSYS finite elements software, then using MATLAB, the wavelet was investigated through a continuous wavelet analysis. Finally the results were displayed in 2-D location-coefficient figures. In the second form, transient-dynamic analysis was done on the structure to find out the characteristics of the damage and the wavelet packet energy rate index was suggested. The results indicate that suggested index in the second form is both practical and applicable, and also this index is sensitive to the intensity of the damage.展开更多
The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The ...The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The solution of this problem is modification of the AC by hydrogen peroxide (H202) oxidation of the surface and treatment of AC with acetic acid as well as special methods of salt deposition and catalyst drying. The investigations of these ways of AC surface modification (treatment of AC with acetic acid and H2O2) have demonstrated the obtained AC to have both an increased adsorption capacity as to Zn(OAc)2 and optimum volumes of meso- and micro-pores as well as high catalyst activity in vinyl acetate (VA) synthesis. The characteristics of supports and catalysts were found out by benzene, water and acetic acid vapors adsorption. The distribution of the salt on the AC surface was studied by small-angle X-ray scattering (SAXS), by scanning electron microscopy (SEM) and X-ray micro-analysis (XMA). The catalysts were tested in vinyl acetate synthesis in flow-bed isothermal reactor by cyclic method at 175, 205 and 230℃.展开更多
文摘Modem and efficient methods focus on signal analysis and have drawn researchers' attention to it in recent years. These methods mainly include Continuous Wavelet and Wavelet Packet transforms. The main advantage of the application of these Wavelets is their capacity to analyze the signal position in different occasions and places. However, in sites with high frequencies its resolution becomes much more difficult. Wavelet packet transform is a more advanced form of continuous wavelets and can make a perfect level by level resolution for each signal. Although very few studies have been done in the field. In order to do this, in the present study, f^st there was an attempt to do a modal analysis on the structure by the ANSYS finite elements software, then using MATLAB, the wavelet was investigated through a continuous wavelet analysis. Finally the results were displayed in 2-D location-coefficient figures. In the second form, transient-dynamic analysis was done on the structure to find out the characteristics of the damage and the wavelet packet energy rate index was suggested. The results indicate that suggested index in the second form is both practical and applicable, and also this index is sensitive to the intensity of the damage.
文摘The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The solution of this problem is modification of the AC by hydrogen peroxide (H202) oxidation of the surface and treatment of AC with acetic acid as well as special methods of salt deposition and catalyst drying. The investigations of these ways of AC surface modification (treatment of AC with acetic acid and H2O2) have demonstrated the obtained AC to have both an increased adsorption capacity as to Zn(OAc)2 and optimum volumes of meso- and micro-pores as well as high catalyst activity in vinyl acetate (VA) synthesis. The characteristics of supports and catalysts were found out by benzene, water and acetic acid vapors adsorption. The distribution of the salt on the AC surface was studied by small-angle X-ray scattering (SAXS), by scanning electron microscopy (SEM) and X-ray micro-analysis (XMA). The catalysts were tested in vinyl acetate synthesis in flow-bed isothermal reactor by cyclic method at 175, 205 and 230℃.