Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen ...Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen under different land uses in a small watershed (12.10 km^2) in the hilly area of purple soil at the upper reaches of the Yangtze River in southwestern China were investigated by using conventional statistics, geostatistics, and a geographical information system in order to provide information for land management and control of environmental issues. A total of 552 soil samples (o to 15 cm) from 276 sites within the watershed were collected in April and August of 2o11, and analyzed for soil total nitrogen (STN) and nitrate nitrogen (NO3-N). We compared spatial variations of STN and NO3-N under different land uses as well as the temporal variations in April (dry season) and August (rainy season). Results showed that STN contents were deeply affected by land-use types; median STN values ranged from 0.94to 1.27g.kg-I, and STN contents decreased in the following order: paddy field 〉 foresfland 〉 sloping cropland. No significant difference was found for STN contents between April and August under the same land use. However, NO3- N contents were 23.26, 10.58, and 26.19 mg·kg^-1 in April, and 1.34, 8.51, and 3.00 mg·kg^-1 in August for the paddy field, sloping cropland and forestland, respectively. Nugget ratios for STN indicatedmoderate spatial dependence in the paddy field and sloping cropland, and a strong spatial dependence in forestland. The processes of nitrogen movement, transformation, absorption of plant were deeply influenced by land use types; as a result, great changes of soil nitrogen levels at spatial and temporal scales were demonstrated in the studied watershed.展开更多
To solve the coverage and quality problems caused by cell outage in LTE networks, this paper proposes a distributed self-organizing networks management architecture and a distributed cell outage compensation managemen...To solve the coverage and quality problems caused by cell outage in LTE networks, this paper proposes a distributed self-organizing networks management architecture and a distributed cell outage compensation management mechanism. After detecting and analyzing the outage, a cell outage compensation algorithm based on reference signal power adjustment is proposed. The simulation results show that the proposed mechanism can mitigate the performance degradation significantly. Compared with other algorithms, the proposed scheme is more effective in compensating the coverage gap induced by cell outage展开更多
This work focuses on the multicell multi-user distributed massive MIMO(DM-MIMO)systems,of which each user is equipped with single antenna and the base stations(BSs)consists of distributed antenna units. We first inves...This work focuses on the multicell multi-user distributed massive MIMO(DM-MIMO)systems,of which each user is equipped with single antenna and the base stations(BSs)consists of distributed antenna units. We first investigate the arbitrary BS antenna topology scenario. The derivation indicates that in this case the achievable uplink rate of an arbitrary user in central cell depends on both the number of BS's antennas and the users' access distance to each distributed antenna unit(DAU). As a result,the performance analysis based on the derivations is difficult. To overcome this issue and achieve clearer insight,we then consider a circularly distributed BS antenna array and obtain the asymptotic uplink rate of an arbitrary user by considering the asymptotic case where the number of antennas of BSs tends to infinity. It is achieved that the asymptotic uplink rate only depends on the distance from users' position to the center of reference cell. The presented numerical results show clearly that the distributed massive MIMO systems outperform the centralized ones. Moreover,it is also achieved that the interference from the adjacent cells imposes great impact on system performance. Besides this,in numerical analysis the averageasymptotic uplink rate of a user is presented,which is free of the users' position and only depends on the radius of circular antenna arrays. It is achieved the maximum average uplink rate would be achieved when the radius of circularly distributed antenna array goes to its optimization location.展开更多
vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetatio...vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.展开更多
In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule...In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.展开更多
基金this project was provided by the Natural Science Foundation of China (Grant No.41271321)the National Key Basic Research Program of China (Grant no. 2012CB417101)
文摘Quantification of soil spatial and temporal variability at watershed scale is important in ecological modeling, precision agriculture, and natural resources management. The spatio-temporal variations of soil nitrogen under different land uses in a small watershed (12.10 km^2) in the hilly area of purple soil at the upper reaches of the Yangtze River in southwestern China were investigated by using conventional statistics, geostatistics, and a geographical information system in order to provide information for land management and control of environmental issues. A total of 552 soil samples (o to 15 cm) from 276 sites within the watershed were collected in April and August of 2o11, and analyzed for soil total nitrogen (STN) and nitrate nitrogen (NO3-N). We compared spatial variations of STN and NO3-N under different land uses as well as the temporal variations in April (dry season) and August (rainy season). Results showed that STN contents were deeply affected by land-use types; median STN values ranged from 0.94to 1.27g.kg-I, and STN contents decreased in the following order: paddy field 〉 foresfland 〉 sloping cropland. No significant difference was found for STN contents between April and August under the same land use. However, NO3- N contents were 23.26, 10.58, and 26.19 mg·kg^-1 in April, and 1.34, 8.51, and 3.00 mg·kg^-1 in August for the paddy field, sloping cropland and forestland, respectively. Nugget ratios for STN indicatedmoderate spatial dependence in the paddy field and sloping cropland, and a strong spatial dependence in forestland. The processes of nitrogen movement, transformation, absorption of plant were deeply influenced by land use types; as a result, great changes of soil nitrogen levels at spatial and temporal scales were demonstrated in the studied watershed.
文摘To solve the coverage and quality problems caused by cell outage in LTE networks, this paper proposes a distributed self-organizing networks management architecture and a distributed cell outage compensation management mechanism. After detecting and analyzing the outage, a cell outage compensation algorithm based on reference signal power adjustment is proposed. The simulation results show that the proposed mechanism can mitigate the performance degradation significantly. Compared with other algorithms, the proposed scheme is more effective in compensating the coverage gap induced by cell outage
基金supported by the Natural Science Foundation of China under Grant 61261015 and 61561043the 973 project 2013CB329104,the Natural Science Foundation of China under Grant 61372124,61363059,and 61302100+1 种基金the projects BK2011027,the Natural Science Foundation of Gansu Province for Distinguished Young Scholars(1308RJDA007)by the Foundation Research Funds for the University of Gansu Province:‘Massive MIMO channels modeling and estimation over millimeter wave band for 5G’
文摘This work focuses on the multicell multi-user distributed massive MIMO(DM-MIMO)systems,of which each user is equipped with single antenna and the base stations(BSs)consists of distributed antenna units. We first investigate the arbitrary BS antenna topology scenario. The derivation indicates that in this case the achievable uplink rate of an arbitrary user in central cell depends on both the number of BS's antennas and the users' access distance to each distributed antenna unit(DAU). As a result,the performance analysis based on the derivations is difficult. To overcome this issue and achieve clearer insight,we then consider a circularly distributed BS antenna array and obtain the asymptotic uplink rate of an arbitrary user by considering the asymptotic case where the number of antennas of BSs tends to infinity. It is achieved that the asymptotic uplink rate only depends on the distance from users' position to the center of reference cell. The presented numerical results show clearly that the distributed massive MIMO systems outperform the centralized ones. Moreover,it is also achieved that the interference from the adjacent cells imposes great impact on system performance. Besides this,in numerical analysis the averageasymptotic uplink rate of a user is presented,which is free of the users' position and only depends on the radius of circular antenna arrays. It is achieved the maximum average uplink rate would be achieved when the radius of circularly distributed antenna array goes to its optimization location.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.41071267)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(Grant No.[2012]940)the Science & Technology Department of Fujian Province,China(Grant Nos.2012I0005,2012J01167)
文摘vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.
基金Projects(2009ZX03003-003, 2009ZX03003-004) supported by the Major National Science & Technology ProgramProject(B08038) supported by the "111" Project+1 种基金Project(HX0109012417) supported by Huawei Technologies Co., Ltd, ChinaProject(IRT0852) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.